¹q¸£¼ÒÀÀ¡G»P®É¶¡µLÃöªºÁ§¤B®æ¤èµ{¦¡ ¡Ð §ô¿£ºAªº¯à¶¥»Pªi¨ç¼Æ
¶q¤l¤O¾Çùتº°ò¥»³W«h
¾÷²v¸ÑÄÀ
ªi°Ê¤èµ{¦¡
¥iÆ[¶qºâ²Å
¸Ô¨£ : ¶q¤l¤O¾Ç½Æ²ß
»P®É¶¡µLÃöªºÁ§¤B®æ¤èµ{¦¡
¦ì¶Õ»P®É¶¡µLÃö¤Uªº¯S¨Ò
¼Æ¾Ç§Þ¥©¡G¤ÀÂ÷ÅܼÆ
»P®É¶¡µLÃöªº¤èµ{¦¡
¹ï©ó¦ì¶Õ¤£ÀH®É¶¡¦Ó§ïÅܪºÁ§¤B®æ¤èµ{¦¡¡A §Ṳ́w¸gª¾¹D¥¦¬O¥i¥H³Q§ï¼g²¤Æ¦¨¡]®É¶¡ÅܼƤÀÂ÷¥X¨Ó¡^¬°¤@Ó¥»¼xÈ«¬ªº¤G¶¥·L¤À¤èµ{¦¡
- h2/2m ¡¾2 φ(x) + V(x)φ(x) = E φ(x)
ª`·N¨ä¤¤ E »P φ (x) ¬Ò¬°¥¼ª¾¡C ·í§ÚÌn¥Î¹q¸£pºâªº¤èªk¨Ó¨D¤@Ó·L¤À¤èµ{ªº¼ÆȸѡA´N¬Oµ¥©ón¿n¤À¤W¦¡¤¤±a¦³·L¤À²Å¸¹ªº³¡¤À¡A¨Ï¥¼ª¾¨ç¼ÆÅܬ°¤wª¾¡C
³o¼Ëªº¤@Ó°ÝÃDùØ¡A·|¥X²{¨âºØ¤j¤£¬Û¦Pªº¸Ñªº«¬¦¡¡A¤@¬O´²®gºA¡B¤G¬O§ô¿£ºA¡A¦b§ô¿£ºA®É³Ì«n·|¥X²{ªº²{¶H´N¬O¯à¶qªº¶q¤l¤Æ¡A¤]´N¬O¥u¦³¬Y¨Ç¯S©wªº¯à¶qȤ~¬O¤¹³\ªº¡C±qpºâªº¨¤«×¦Ó¨¥¡A¤¹³\»P¦³¬O«ç¼Ëªí²{¥X¨Ó©O¡H¬Oªi¨ç¼Æ¯à§_³QÂk¤@¤Æªº°ò¥»n¨D¡C¦pªG¦b¬Y¤@Ó E Ȫº¸Õ§@¤Uªi¨ç¼Æµo´²¤F¡A¥¦´N¨S¦³¿ìªk³Q¨D¥X¹ï¾ãӪŶ¡ªº¿n¤À¡]µL¤j¡^¡A¦]¦Ó¤]´N¨S¦³¿ìªkÂk¤@¤Æ¥¦ªºªi¨ç¼Æ¤F¡C§ÚÌ´N»{©w³o¼Ëªº E ȬO¤£¤¹³\ªº¯à¶qÈ¡A¨Ã¥B§@¨ä¥Lªº²q´ú¡A¾¨¥i¯à§ä¥X©Ò¦³¤¹³\ªº E È»P¨ä¹ïÀ³ªºªi¨ç¼Æ¸Ñ¡C
»{ÃѸӼƾǰÝÃDªº¥»½è
¤wª¾»P¥¼ª¾
- h2/2m ¡¾2 φ(x) + V(x)φ(x) = E φ(x)
¥»¼xÈ°ÝÃDªº·L¤À¤èµ{¦¡
¤°»ò¬O "·L¤À¤èµ{¦¡" ¡H
¤°»ò¬O "¥»¼xÈ" ¡H
¼ÆȨD¸Ñ : ±N·L¤À¤èµ{¦¡¿n¤À
ºtºâªk : ¶ø¨Ì°Çºtºâªk¡B¶©¥¨®w¶ð ©Î ¶ø¨Ì°Ç¡Ð§J¬¥º¿ (¤ñ¸û : ¶ø¨Ì°Ç¡Ð²z¬d»¹) ºtºâªk
·L¤À¤èµ{¦¡¨D¸Ñ´²¤§ºtºâªk²¤¶¡]«Ý³sµ²¡^
n¿n¤Àªº¤èµ{¦¡¡A¸g¾ã²z«á¦³¥H¤U«¬¦¡
d2/dx2 φ(x) = 2m/
h2 [V(x) -E]φ(x)¥i¤Æ¤Æ¬°¨âÓÁp¥ßªº¤@¶¥±`·L¤è¦¡¡G
d/dx φ(x) = φ' (x)
d/dx φ'(x) = 2m/h2 [V(x) -E] φ(x)ª`·N°Ñ¦Ò®Ñ¤W«Øij¥Î¤U±³oºØ Euler-Cromer ºtºâªk¨Ó³B²z³oºØ·|®¶Àúªº¸Ñ´N°÷¦n¤F¡]¸Ô¨£°Ñ¦Ò®Ñ Gould & Tobochnic ¤º¤å¡^½Ðª`·N±×²v¶µ¬O¨ú n+1 ÂI¤W¦Ó«D n ÂI¤Wªº¡A¤]´N¬O
φ's+1 = φ's + φ''s+1 Δx
φs+1 = φs + φ's+1 Δ x§Ṳ́]¦]¦¹¤£¥²°Ê¥Î¹³ Runge-Kutta ¨ººØ¸û°ª¶¥¥B¸ûºë±Kªººtºâªk¡]¸Ô¨£¼ÆȤèªk½u¤W±Ð§÷¡^¡C¥t¥~¡AY§Ú̱Ħæ©Ò¿×ªºì¤l³æ¦ì¡]atomic unit¡^¡A«h¤W¦¡¤¤ªº¹q¤l½è¶q»P¤R®Ô§J±`¼Æ³£¥i¥H³]¦¨ 1¡C
ªì©lÈ
¦b¥»¸`¬°¤F§Q©ó¼ÒÀÀ¥Ü½d¥H¤W»¡©úªº¯S©Ê¡A§Ú̱ĥΤF¤@Ó¸û¬°Â²¤Æ¤Fªº±¡ªp¡A´N¬O¥u³B²z V(-x) = V(x) ³oºØ¥H y=0 ¬°Ãè±¹ïºÙ³oºØ«¬¦¡ªº¤@ºû¦ì¶Õ¡C³o¼Ëªº¹ïºÙ©Ê±N«OÃÒ¨ä¸Ñ¥²¦³©ú½Tªº¦tºÙ©Ê¡]parity¡^¡A·N«ä´N¬O»¡¨ä¸Ñ¥²©w¬O©_¨ç¼Æ f(-x) = -f(x) ©Î¬O°¸¨ç¼Æ f(-x) = f(x) ¡A¤£·|¦³¨ä¥Lªºª¬ªp¡C
³o¼Ëªº¯S¨Ò±aµ¹§ÚÌ¥H¤Upºâ¤WªºÂ²¤Æ¡G¤@¡B¸Ñ¦Û°Ê¤À¬°©_¨ç¼Æ»P°¸¨ç¼Æ¨â²Õ¡A³£¥un³B²z«á±q¹s¨ì¥¿µL¤j¤§¶¡ªº½d³ò¨D¸Ñ§Y¥i¡]¦]©_°¸¨ç¼Æªº¥t¤@¥b¬O½T©wªº¡^¡A¥t¥~¡A¤Z©_¨ç¼ÆªÌ¬Ò¥i¥Ñªì©lìÂI¥H f(x=0) = 0¡Bf'(x=0) = 1 §@ªì©l±ø¥ó¥Xµo¶}©l¦V¥k¿n¤À¡A¦Ó°¸¨ç¼ÆªÌ¬Ò¥i¥Ñªì©lìÂI¥H f(x=0) = 1¡Bf'(x=0) = 0 §@ªì©l±ø¥ó¥Xµo¶}©l¦V¥k¿n¤À¡C
²q´ú¥»¼xÈ
Âk¤@¤Æ¤§¥²n©Ê¤Î¨ä§P©w
¥H¤U¬°µ{¦¡¬yµ{·§n¡G
(1) ¨Ï¥ÎªÌ¿é¤J¦ì¤«²`«× V0 »P¼e«× 2a¡Aµe¥X¦ì¤«ªº¹Ï§Î
(2) ¿é¤J²q´úªº E È¡A¥H¤Î©_°¸©Ê
(3) ¥Îºtºâªk¤@¨B¨B¿n¤Àªi¨ç¼Æ¡A¨Ãø¹Ï¨ÑÆ[¹î
(4) ²M°£µe±¡B«µe¦ì¤«¡B«ÂШBÆJ (2)
³oÓµ{¦¡¬O¨Ñ¨Ï¥ÎªÌ¤£Â_¤â¤u¹Á¸Õ E È¡A§ä¥X¶q¤l¤O¾Ç¤¹³\ªº¨º¨Ç¡C
¼¶¼gµ{¦¡¡G
¡]½Ð¦Û¦æ½m²ß¡^
¯uªº¼g¤£¥X¨Ó¡A°½¬Ý¤@¤U¦Ñ®v¼gªº½d¨Òµ{¦¡
¾Þ§@
¿ï parity
¿ï eigenvalue (¥»¼xÈ)
Æ[¹î »P °Q½×
¤@¡B¬°¦ó¦V¤W©Î¦V¤U¨««á´N¤@©w¬Oµo´²¡H ¡]©Ò¥H§ÚÌ¥i¥H½T©w¦³¤@ӸѤ@©w¦b¦V¤W»P¦V¤Uµo´²¤§¶¡¡^
´£¥Ü¡G±qºtºâªkªºÁͶեh¬Ý
¤G¡Bµ¹©w¤@Ӧ줫¡A¨ä©Ò¦³¥i¯àªº¥»¼xȬO¦³ÓÁÙ¬OµLÓ¡H
¤T¡B´«¦¨©ßª«½u«¬ªº¦ì¶Õ¡A¨ä¥»¼xȪº¤À§GÅܦ¨«ç¼Ë¡H
°½¬Ý¤@¤U¡Geigen_parabolic.f
©µ¦ù«ä¦Ò
¦b¥»³æ¤¸¤¤§ÚÌn¤@Ó¤@Ó²q¯à¶qÈ¡A½ÖµM¦³¦V¤W¡B¦V¤Uµo´²ªº´£¥Ü§@¥]§¨¡A¦ý¹ê¦bÁÙ¬O¤Ó³Â·Ð¡A¦³¨S¦³¦Û°Êªº¤èªk¡H
«ä¦Ò¨ç¼Æªº¨D®Ú°ÝÃD¡]µ¹§Ṳ́@Ó©ú½Tªº¨ç¼Æ f(x)¡A°Ý¨º¨Ç x ·|¨Ï f(x) = 0 ¡A§ÚÌ«ç»ò§@¡H¡^
¸Ñ¥X¨Ó¡H
§@¹Ï¡H
¥Î¹q¸£¦a´à¦¡·j¯Á¡H
¦³ºtºâªk¥i¥Î¶Ü¡H¡]¤G¤Àªk¡B¤û¹yªk¡^