¬Û¹ï½×

 

³t«×¬Û¥[ªº°ÝÃD

ª½±µÃö«Y¨ì§Ú­Ì®É¡BªÅªº¦t©zÆ[

¹ïª«²z©w«ß¦b¤£¦PºD©Ê®y¼Ð¨t¤U¤@­P¡A¤]¬O°ò¥»¹w´Á

 

°¨§J´µ«Âº¸¤èµ{¦¡

¥|±ø¤@²Õªº°¨§J´µ«Âº¸¤èµ{¦¡

¹qºÏªiªºªi³t

¾ã²z«áÅܦ¨ªi°Ê¤èµ{¦¡¡]¸Ô¨£½Ò¥»±À¾É 31.1¡^¡Aªi³t¦]¦¹ª½±µ¥X²{¦b¤½¦¡¤¤

¨ä¤¤

 

¥úªº¤¶½è¡G¥H¤Ó¡H

Án­µªº¶Ç¼½´C¤¶¬OªÅ®ð©Î¥i®¶°Êªºª«½è¡A·í®É®Æ¾Ç®a¤]²z©Ò·íµM»{¬°¦³±Mªù¶Ç¼½¥úªº¤¶½è¡A¬Æ¦Ü¥ý©R¦W¥¦¬°¥H¤Ó¡C

 

§ä´M¥H¤Ó

ÁÚ¥i´Ë¡Ð²ö§Qªº¤z¯A»ö

¨Ó¦Û¦P¤@­Ó¥ú·½¡A¤À¥Xªº¨â¹D¥ú¸ô«á¦AÅý¥L­Ì¤z¯A¦b¤@°_¡A­Y¥úµ{µy¦³ÅܤơA´N¦³¤z¯A±ø¯¾ÅܤơC¦p¦¹¡A·Q¹³¤@±ø¥ú¸ô»P¥H¤Ó­·ªº¤è¦V¥­¦æ¡A¥t¡V±ø¥ú¸ô««ª½¡Cµy§@¤ÀªR§Y¥iª¾¥úµ{¤£¦P¡C²{¦b·Q¹³±N¾ã­Ó»ö¾¹½w½w±ÛÂà 90 «×¨¤¡A¨Ï¨â±ø¥ú¸ô¨¤¦â¥æ´«¡A«h§Ú­Ì¹w´Á­n¬Ý¨ì¤z¯A±ø¯¾ÅÜ¡C

 

³Ì¦¨¥\ªº¥¢±Ñ¹êÅç

»ö¾¹¤§ÆF±Ó«×¤w§ï¶i¨ì«D±`¦n¡]»·¶W¹L©Ò»Ý¡A¦a²y¤½Âà³t«×¨C¬í¼Æ¤½¨½¡^¡A¥u­n¦³¹ï¥H¤Óªº¬Û¹ï¹B°Ê¤@©w´ú±o¥X¨Ó¡C¦ýÁÙ¬OµL¥ô¦óµ²ªG¡A¥é©»¥H¤Ó¦b¦a²y¶g³ò¬OÀR¤î¡C

 

³Ò­Û¯YÁYµu²z½×

ªuµÛ¹ï¥H¤Ó¹B°Êªº¤è¦V¡Aªø«×ÁYµu

L = L0 √(1 - v2/c2 )

«ê¦n¥i¥H²Å¦XÁÚ¥i´Ë¡V²ö§Q¹êÅç¡A¦ýª§Ä³©Ê«Ü¤j¡C

 

·R¦]´µ©Zªº¬Û¹ï½×¡]¬Û¹ï©Ê­ì²z¡^

°ò¥»°²³]¡G

¡]¤@¡^©Ò¦³ºD©Ê¡]§Y¤£¥[³tªº¡^®y¼Ð¨t¤¤¡Aª«²z©w«ß¤£ÅÜ

¡]¤G¡^¥ú³t¹ï¥ô¦óÆ[¹îªÌ¬Ò¬Û¦P

 

β »P γ

³o¨â­Ó¶q±`¦b¬Û¹ï½×¤¤¨£¨ì¡A¥ý©w¸q

β = v / c

γ= 1 / √ (1 - β2)

 

¥úÀ@

¥ô¦ó°T¸¹»P¥æ¤¬§@¥Î¤£¯à¶W¹L¥ú³t¡A¦]¦¹¬Y¤@®ÉªÅÂI¯à¼vÅT¨ìªº½d³ò¡A¦³¤@­Ó·sªºÃä¬É­­©w¡A¥s¥¿¥úÀ@¡F¦Ó©Ò¦³¯à¼vÅT¨ì¸Ó®ÉªÅÂIªº³¡¤À¡A«h¥s­t¥úÀ@¡C

¨£¹Ï

¤W¹Ï¤¤¡A¬õÂI¥u¯à¼vÅTÂÅÂI¡A¦Ó»PºñÂI§¹¥þ¤£·|¦³¦]ªG¤Wªº¬ÛÃö©Ê¡C¦P²z¡A¹L¥h©Ò¯à¼vÅT¨ì²{¦bªº¡]¨Æ¥ó¡^ÂI¡A¤]¥u¦b¤@©w¶ZÂ÷½d³ò¤§¤º¡C

 

¥j¨åª«²z¡G

¨âªÅ¶¡ÂIªº¬Û¶Z¡]¤£½×¨º­ÓÆ[¹îªÌ¬Ý¨ì¡^

Δr = √ [ (x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2 ]

¡]ª`·N¡G¤W¦¡¦b®y¼ÐÅÜ´«¤U¨ä­È¤£ÅÜ¡A§Y®y¼ÐÂà´««Oªø¡^

 

¨â®É¨èÂIªº¶¡¶Z¡]¤£½×¨º­ÓÆ[¹îªÌ¬Ý¨ì¡^

Δt = t 2 - t 1

 

¬Û¹ï½×¡G

¨â¨Æ¥óÂI¦b®ÉªÅ¤¤ªº¶¡¶Z¡]¤£½×¨º­ÓÆ[¹îªÌ¬Ý¨ì¡^

s2 = c2 (Δt)2 - (Δr)2

 

®É¶¡¼Wªø

Δt = γΔt0

Δt0 = 2h / c

Δt = L / c

¨ä¤¤ (L/2)2= h2 + (x/2)2 ¬G L = √(4h2 + v2Δt2)

«h Δt = L / c = √(4h2/c2 + v2/c2 Δt2) = √(Δt02 + v2/c2 Δt2)

§Y Δt √(1 - v2/c2 )= Δt0

Δt = Δt0  / √(1 - v2/c2 )

§Y Δt = γΔt0 

 

ªø«×ÁYµu

L = L0 / γ= L0 √(1 - v2/c2 )

­«²{¤F³Ò­Û¯Y´£¥Xªºªº°²»¡¤½¦¡

¬ì¾Ç¨S¦³¦]¦¹¦Ó·d¶Ã¡Aª«²z©w«ßªº¦ì¶¥¤Ï¦Ó§ó¥[í©T¡C

±À¾É¡]¨£½Ò¥»¥H¤ÓªÅ±ô¬°¨Ò¡^

ÀR¤î®É¾÷¨­ªø L0 ªº¤ÓªÅ±ô¦V«e­¸¦æ³t«× v¡A¶q¨ä¾÷¨­ªø«× L

¦bÀR¤î®y¼Ð¨t¸m ¹p®g»P­p®É¾¹¡A¾÷»ó¾×¦í ¥ú§ô±Ò°Ê­p®É¡A¾÷§ÀÂ÷¶}®É­p®É°±¤î¡A«h L = v Δt0 ¡A¨ä¤¤ Δt0 ¬O proper time¡]¦¹¤@®ÉÄÁ¨S¦³¦b¹B°Ê¡^¡C¥t¥~¡A ±q¾÷¤º¤HÆ[ÂI¦Ó¨¥¡A¬Ý¾÷¥~ÄÁªºÅª¼Æ©TµM¬O Δt0¡A¦ý­Y¨Ï¥Î¸m©ó¾÷¤ºªº®ÉÄÁ«h¦³®É¶¡¿±µÈ®ÄÀ³ Δt  = γΔt0¡A¦]¦¹¥ú§ô³Q¾×¦í¡]¥ý¾B«á©ñ¡^ªº¾ã­Ó¬yµ{¯Ó®É Δt  ¡A¥L¬Ý¨ì¥ú§ô·Ó®gÂI¨«¤F v Δt ªº¶ZÂ÷¡Aªø«×«ê¬O¾÷¨­ªø L0 ¡C

ºØÁ`¦Ó¨¥¤§¡A¥Ñ©ó¦³®É¶¡¿±µÈ®ÄÀ³¡A¾÷¤ºÄÁ­p±o¤§®É¶¡ Δt ¤ñ¾÷¥~ÄÁ­p±o¤§®É¶¡ Δt0 ªø¡AÃö«Y¬° Δt  = γ Δt0¡A¬G §Ú­Ì¦³

L = v Δt0

L0 = v Δt = v γ Δt0

±o L = L0 / γ

¬G¶q±o¤§¾÷¨­ªøÁYµu 1/ γ ­¿

 

Åp¥Í¤l¥Ù¬Þ

¤©¬ÞÂI¡G¤ÓªÅ¡]°ª³t¡^®È¦æ¦^¨Ó¡A¨â­Ó³£¤ñ¹ï¤è¦~»´¡A¥Ù¬Þ¡C

¸ÑÄÀ¡G§¤¤ÓªÅ²îªº¡A­n§éªð¦^¨Óªº¨º¤@­Ó¸û¦~»´¡A¤À§O±q¦a²yÆ[ÂI»P¤ÓªÅ²î²yÆ[ÂI¬Ò¦p¦¹¡C

§@ªk¡G§Q¥Î«e­±¤w±À±oªº®É¶¡©µ¿ð¥H¤Îªø«×ÁYµu

¥»°ÝÃD¤§  γ ­È¬° 1/ √(1- 0.652) = 1.32

¦a²y¤H¬Ý¡G¤ÓªÅ²î 0.65 ­¿¥ú³t¦V¥k¡A ©è¹F 3.25 ¥ú¦~³B«á­ì³t§éªð¡A³æµ{¶O®É 5 ¦~¡A¬G 10 ¦~ªð©è¦a²y ¡C¦a²y¤Wªº¤H¤]ª¾¹D¤ÓªÅ²î¤W®É¶¡¬y¸ûºC¡A10¦~ / γ= ²î¤W¦~¡A¤J¥N γ ­È ±o 10 ¦~/ 1.32 = 7.576 ¦~¡C

¤ÓªÅ¤H¦³¦b²¾°Ê¡A¦b¥L¬Ý°_¨Ó¶ZÂ÷ (¦³ªø«×ÁYµu) ³æµ{¬° 3.25*1/1.32 = 2.462121... ©¹ªðÁ`ªø 4.9242...          (¦Ó¤£¬O 6.5 ¥ú¦~)¡A¬G¨ä¦æµ{¶O®É 4.9242 ¥ú¦~ / 0.65 ¥ú³t = 7.576 ¦~¡C

 

 

½Ðª`·Nªð¯è®É³t«×¬O -0.914 c ¡A¦Ó¤£¬O¨â­¿ 0.65c ªº -1.3 c ¡C

¡]½Ð¾\Ū½Ò¤å pdf ¦@¤T­¶¡^

 

·sªº³t«×¬Û¥[¤½¦¡

¤£¦A¬O u'x = ux + v

¦Ó¬O¡]±À¾É¨£½Ò¥»¡^

 

¬Û¹ï½×ÀW²v°¾²¾

ÀW²v»P®É¶¡¦³Ãö¡A¯U¸q¬Û¹ï½×§i¶D§Ú­Ì¡A¦³¬Û¹ï³t«×ªºµo®gÅé¡A¥Ñ©ó®É¶¡¶¡¹j§ïÅÜ¡A¦]¦¹ÀW²v¤]·|§ïÅÜ¡C³o»PÁn¾Ç³£¤R°Ç®ÄÀ³ªº­ì²z¬O¤£¦Pªº¡C

¸Ô²Ó±À¾É¨£ http://en.wikipedia.org/wiki/Relativistic_Doppler_effect

³]¬Û¤¬»·Â÷

±q¥ú·½ªºÆ[ÂI¡A±q²Ä¤@­Óªi«e«ê¹F¨ì±µ¦¬ªÌ¡A¦¹®É²Ä¤G­Óªi«e¶Z±µ¦¬ªÌ λ¨º»ò»·¡C

­nÅý²Ä¤G¹Dªi«e¥H¥ú³t c °l¤W±µ¦¬ªÌ¡A¦ý±µ¦¬ªÌ¤]¦P®É¥H v «á°h¤¤¡A°l¤W¡]²Ä¤Gªi«e³Q±µ¦¬¨ì¡^®É²Ä¤Gªi«eÁÙ­n¨« λ+ v t0 ³o»ò»·¡A¬O¥H¥ú³t c ¨Ó¨«ªº¡A¦³¥H¤UÃö«Y¦¡

λ+ v t0 = c t0

¦@¶O®É

t0 = λ / (c - v)

¦¹ λ¬°ªiªø¡A¬G¦³ λ = c / f0¡A¦]¦¹

t0 = λ / (c - v) = (c / f0) / (c - v) = 1/ [(1 - β) f0]

±µ¦¬ºÝ¬O²¾°Ê¤¤ªº¡A¬G®É¶¡¹L¤ñ¸ûºC¡A¦¹¤@¨Æ¥ó¤§¾ú®É t0  ¹ï±µ¦¬ºÝ¦Ó¨¥·|¸ûµu

t = t0 / γ

¬G

f = 1/ t = γ[(1 - β) f0]

= [(1 - β) f0] / √ [(1-β) (1+β)]

= f0 √[ (1-β) / (1+β)]

= f0 √[ (c -v) / (c + v)]

 

(»·Â÷®É)

f = f0 √ [ (c-v) / (c+v) ]

 

(±µªñ®É)

f = f0 √ [ (c+v) / (c-v) ]

 

(transversive)

 

³Ò­Û¯YÂà´«

©úÅã»P¦÷§Q²¤Âà´«¤£¦P¡A®É¡BªÅ¬O¦P¬°¶qªº¨â­Ó¤À¶q¡]¦P¨B®øªø¡A¹³±ÛÂà¤@¯ë¡^¡A¬G®ÉªÅ¬O¤@Å骺¡C

 

¦÷§Q²¤Âà´«

x' = x - vt

y' = y

z' = z

t' = t

 

³Ò­Û¯YÂà´«

x'  = γ ( x - vt )

y' = y

z' = z

t' = γ ( t - vx/c2 )

 

³Ò­Û¯YÂà´«¤Uªº¤£Åܶq

§@·~¡GÅçÃÒ«e­±©Ò©w¤Î s ¬O¤@­Ó³Ò­Û¯YÂà´«¤Uªº¤£Åܶq

 

¥H¤£Åܶq¨Ó¼gª«²z©w«ß¤½¦¡

¡]¤~¯à¯u¥¿¬ðÅ㤽¦¡¤¤¦Uª«©Ê©Î¶qªº¯S¼x¡A¦Ó¤£¥u¬O¦¡·s¼g¡C¡^

¦b¬Û¹ï½×¦Ò¼{¤U¡A¦V¶q³£¬O¥|ºûªº¡A¦Óª«²z©w«ß«h§Î¦¡¤W­nº¡¨¬³Ò­Û¯YÂà´«¤£ÅÜ©Ê¡C

¨äªø«×¡]µ´¹ï­È¡^·|º¡¨¬³Ò­Û¯YÂà´«¤£Åܩʪºª«²z¶q¡A¦p¡G¡]¦ýµ´¹ï­È©w¸qùتº¥­¤è©M¡^­n¥Î - + + + «Y¼Æ¡A¥s¶{¥i¤Ò´µ°òµ´¹ï­È (norm)¡^

®É¨è¡B¦ì¸m¬O¦b¦P¤@­Ó¥|ºû¦V¶q¤§¤º¡GXμ = ( ct, x, y, z )

¥ú³t¡B³t«×¬O¦b¦P¤@­Ó¥|ºû¦V¶q¤§¤º¡GUμ = ( γc, γvx,γvy,γvz )

¯à¶q¡B°Ê¶q¬O¦b¦P¤@­Ó¥|ºû¦V¶q¤§¤º¡GPμ = m Uμ= ( γm c,γmvx,γmvy,γmvz) = ( E / c, px, py,  pz )

¹q¦ì¡B¦V¶q¦ì¦PÄݤ@­Ó¥|ºû¦V¶q¤§¤º¡G  Aμ = ( Φ/ c, Ax, Ay, Az )

 

·sªº°Ê¶q»P¯à¶q¤½¦¡

°Ê¶q

¤£¦A¬O p = m v ¡A¦Ó¬O

p = γ m u

¨ä¤¤ u ¬O¬YÆ[¹îªÌ¬Ý¨ìªº³t«×¡A¦Ó m ¥Ã»·«üªº¬OÀR¤î½è¶q¡C³o¼Ë©w¤~¯àº¡¨¬°Ê¶q¬ÛÃö©w«ß¡]¦p°Ê¶q¦u«í¡^¦b¬Û¹ï½×¤¤¹ï©Ò¦³Æ[¹îªÌ©w«ß¤£ÅÜ¡C

Halliday ½Ò¥»±Ðªk¦p¤U¡G»Ý­«·s©w¸q°Ê¶q¡A¥H¨Ï°Ê¶q¦u«í©w«ß¾A¥Î©ó¤£¦P¬Û¹ï³t«×ªºÆ[¹îªÌ¡G

p = m × Æ[¹îªÌ®y¼Ð¨t¤¤¤§¶ZÂ÷ / ÀR¤î®y¼Ð¨t¤¤¤§®É¶¡ = m Δx / Δt0

¡]Æ[©À¡Gproper time ¤~¬O¹ïÀ³¨ì¯Â¶qªº®É¶¡¡A©ñ¦b¤À¥ÀªºªF¦è¥²¶·­n¬O¯Â¶q¡^

 

¤O

¤Oªº¥¿½T¤½¦¡¬O

F = d p / d t 

¡]¤£¯à¦A¥Î F = m a¡A§Y¨Ï¦³©Ò¿×ªº¬Û¹ï©Ê½è¶q mr¡A¤]¤£¯àª½±µ§â mr ¥N¤J F = mr a ¡AGiancoli ¥mÀ{¡^

 

¯à¶q

¥ý¥u¦Ò¼{°Ê¯à¡]¦ì¯à¦b¦¹µLÃö¡^¡A¥»¨Ó¬O 1/2 m v2¡A¦ý¦b¬Û¹ï½×¤U¡A°Ê¶q©w¸q¤w¸g¤£¦P¡A

¯à¶q¤½¦¡ªº±À¾É

W = ∫ F dx = ∫ dp/dt dx

¨ä¤¤ dp / dt = d(γm u) / dt = m/[(1 - v2/c2)(3/2)] dv/dt

¡]¿n¤À¹Lµ{¨£½Ò¥»¡^

¥\¡Ð¥\¯à©w²zÄ~Äò¾A¥Î¡A§Y ΔK = W ¡A«h±o

K = (γ-1) m c2

Bauer & Westfall ½Ò¥»¡A¬O¥ý»¡©ú·R¦]´µ©Z´£¥Xª«ÅéÀR¤î®É E0 = m c2¡A¬G¥[¤J°Ê¯à«á±o

E  = γm c2

¤W¦¡ E ¬O¬Û¹ï½×¤U¤§Á`¯à

ÀR¤î®É E0 = m c2¡A²¾°Ê®É¡A¦h¤F γ ªº«Y¼Æ¦]¤l¡A E = γE0 ¡A§Y E  = γm c2 ¡C

 

°Ê¶q¡Ð¯à¶qÃö«Y

«D¬Û¹ï½×¤U E = p2 / 2m ¡A¦b¬Û¹ï½×¤U

¥Ñ©ó E = γm c2 ¡Bp = γm v¡A¦Ó¦³

E2 = p2 c2 + m2 c4

½Ðª`·N³o­Ó¦¡¤l¤¤¨S¦³ γ¡Bβ µ¥¬Û¹ï³t«×¦³Ãöªº¶q¡A¤W¦¡¬O¤@­Óº¡¨¬¤£Åܩʪº¤èµ{¦¡¡C¨ä¤¤

m2 c4 = E2 - p2 c2 ©Î m2 = (E / c2)2 - (p/c)2 ¬O¤@­Ó®y¼ÐÂà´«¤£Åܶq¡C

 

³Ì¦³¦Wªºª«²z¤½¦¡

¤W¦¡ E2 = p2 c2 + m2 c4 ¡A¦bÀR¤îªºª¬ºA¡]©Î®y¼Ð¨t¡^ v = 0 ¡A¬G p = γm v = 0

±o E2 = m2 c4¡A§Y

E = m c2

 

2005¦~¡A¥@¬Éª«²z¦~

 

¥t¤@ºØ±À±o E = m c2 ªº¤è¦¡

·R¦]´µ©Z¦b´M¨DÀò±o¬Û¹ï½×¤§¯à¶q¡]°Ê¯à¡^¤§®É¡AÂǥѦҼ{§C³t¤U°Ê¯àÀ³¸Ó­n­«²{ 1/2 m v2 ªºµ²ªG¡A µo²{¥²»Ý´î¥h¤@­Ó±`¼Æ¶µ m c2 ¤~¥i±o¨ì¡A

»¡©ú¦p¤U¡G

°Ê¯à K = (γ - 1) m c2 = m c2/ √[1 - (v/c)2]  - m c2

·í v << c ®É¡A ®õ°Ç®i¶} γ= 1 + 1/2 β2

ÅçÃÒ¡G®õ°Ç®i¶} γ= [1 - β2](-1/2)  = 1 + (-1/2) [1 - 0](-3/2)  (-1)β2 + ... = 1 + 1/2 β2 + ...

 

¹êÅçÃÒ©ú

²É¤l (μ) °IÅܪº¥Í©R´Á

°ª³t²¾°ÊªÌ¥Í©R´ÁÅܪø

 

³Q±a¤W­¸¾÷¡]¶¦a²y¥|°é¡^ªº­ì¤lÄÁ

ªº½T»P¦a­±¤Wªº¤£¦P

 

¨ä¥L¬Û¹ï½×ªºÃÒ¾Ú

beta-®g½u¦bºÏ³õ¤¤Ås§éªº¨¤«×¡A»P½è¶q (°Ê¶q) ¦³Ãö

­ì¤lùتºªñ¥ú³tªº¹q¤l¡A¦³®Ä½è¶q (°Ê¶q) ­n­×¥¿

¬Û¹ï½×¶q¤l¤O¾Ç¡Ð¹q¤l¦Û±Ûªºµo¥Í

 

 

¼s¸q¬Û¹ï½×

¤Þ¤O»P¹B°Êªº¥[³tµ¥®Ä

ªÅ¶¡¡]®ÉªÅ¡^¨üª«½èÅs¦±

·R¦]´µ©Z¤èµ{¦¡

¤èµ{¦¡ªº¼Ë¤l¦p¤U¡G

G£g£h - £N g£g£h = k T£g£h

¤W¦¡ªº·N«ä¬O

®ÉªÅ¦±²v - ¦t©z¶µ = ª«½è±K«×

¨ä¤¤ £N¬O¦t©z±`¼Æ¡Bk ¬O­«¤O±`¼Æ¡CùØÀY¬°¤FÀç³y¥X«í©w¦t©z¡]§_«h­ì¤èµ{¦¡ªº¸Ñ«D¿±µÈ§Y¦¬ÁY¡^¡A¦Ó³]ªºÊï®ø¶µ¡C

1929 ¦~¦b«¢§B±o¨ì¦t©z¿±µÈªºÃҾڮɡA·R¦]´µ©Z¦ÛºÙ³o¬O¥L¤@¥Í³Ì¤j³Ì¿ù»~¡C¡]¦³¼Æ¾Ú¤ä«ù¦t©z¿±µÈ¬O¥[³t¤§«á¡A¦³¤H¦]¦¹»¡¡AÃø¨ì·R¦]´µ©Zªº¦t©z¶µ²×¨sÁÙ¬O¥[¹ï¤F¶Ü¡H¡^

 

¶Â¬}

³o¬O·R¦]´µ©Z¤èµ{¦¡ªº¤@ºØ¸Ñ¡A½è¶q±K«×¤j±o®ÉªÅÅs¦±¨ì³s¥ú³£¥X¤£¨Ó¡C

 

¦t©z¿±µÈ

³o¤]¬O·R¦]´µ©Z¤èµ{¦¡¸Ñªºªº¤@ºØ¸Ñ¡A¦ýª`·N½è¶qªºªþªñ¨Ã¥¼¿±µÈ¡C

 

¹êÅçÃÒ©ú

¤Ó¶§­I«áªº¬P¥ú¡]­«¤O³zÃè¡^¡]½Ò¤å¶}³¹¹Ï«h¬°»Èªe¨tªº¡^

 

¤ô¬P¤½Âà¡]ªñ¤éÂI¡B»·¤éÂI¡^ªº¶i°Ê

 

¬Û¹ï½×¦b¥Í¬¡¬ì§Þ¤W­YÀ³¥Î

¥þ²y½Ã¬P©w¦ì¨t²Î¡]GPS¡^

http GPS 1, 2

http ­ì¤lÄÁ

¯U¸q»P¼s¸q¬Û¹ï½×³£¦³¥Î¨ì

¯U¸q¡G½Ã¬P¹ï¦a­±¦³³t«×

¼s¸q¡G½Ã¬P»P¦a­±¨ü­«¤O¤£¦P

­ì¤lÄÁ¤§¶¡ªº¦P¨B¤Æ¬Oºë½T¨ì 10-13¡A¦Ó¥H½Ã¬P³t«× 4 km/s ¡A¨ä®É¶¡¿±µÈ»P§_ªº¬Û¹ï»~®t¬O 10-10¡A¬ÝÁö¤£¤j¡A¦ý¤ñ­ì¤l ÄÁ¤§¶¡ªº¦P¨B¯à¹F¨ìªººë·Ç«×ÁÙ®t¤@¤d­¿¡A¤£§@­×¥¿±N¨Ï©w¦ìµ²ªG¤j¤j¥¢·Ç¡C