¬Û¹ï½×
³t«×¬Û¥[ªº°ÝÃD
ª½±µÃö«Y¨ì§Ú̮ɡBªÅªº¦t©zÆ[
¹ïª«²z©w«ß¦b¤£¦PºD©Ê®y¼Ð¨t¤U¤@P¡A¤]¬O°ò¥»¹w´Á
°¨§J´µ«Âº¸¤èµ{¦¡
¥|±ø¤@²Õªº°¨§J´µ«Âº¸¤èµ{¦¡
¹qºÏªiªºªi³t
¾ã²z«áÅܦ¨ªi°Ê¤èµ{¦¡¡]¸Ô¨£½Ò¥»±À¾É 31.1¡^¡Aªi³t¦]¦¹ª½±µ¥X²{¦b¤½¦¡¤¤
¨ä¤¤
¥úªº¤¶½è¡G¥H¤Ó¡H
Ánµªº¶Ç¼½´C¤¶¬OªÅ®ð©Î¥i®¶°Êªºª«½è¡A·í®É®Æ¾Ç®a¤]²z©Ò·íµM»{¬°¦³±Mªù¶Ç¼½¥úªº¤¶½è¡A¬Æ¦Ü¥ý©R¦W¥¦¬°¥H¤Ó¡C
§ä´M¥H¤Ó
ÁÚ¥i´Ë¡Ð²ö§Qªº¤z¯A»ö
¨Ó¦Û¦P¤@Ó¥ú·½¡A¤À¥Xªº¨â¹D¥ú¸ô«á¦AÅý¥L̤z¯A¦b¤@°_¡AY¥úµ{µy¦³ÅܤơA´N¦³¤z¯A±ø¯¾ÅܤơC¦p¦¹¡A·Q¹³¤@±ø¥ú¸ô»P¥H¤Ó·ªº¤è¦V¥¦æ¡A¥t¡V±ø¥ú¸ô««ª½¡Cµy§@¤ÀªR§Y¥iª¾¥úµ{¤£¦P¡C²{¦b·Q¹³±N¾ãÓ»ö¾¹½w½w±ÛÂà 90 «×¨¤¡A¨Ï¨â±ø¥ú¸ô¨¤¦â¥æ´«¡A«h§Ú̹w´Án¬Ý¨ì¤z¯A±ø¯¾ÅÜ¡C
³Ì¦¨¥\ªº¥¢±Ñ¹êÅç
»ö¾¹¤§ÆF±Ó«×¤w§ï¶i¨ì«D±`¦n¡]»·¶W¹L©Ò»Ý¡A¦a²y¤½Âà³t«×¨C¬í¼Æ¤½¨½¡^¡A¥un¦³¹ï¥H¤Óªº¬Û¹ï¹B°Ê¤@©w´ú±o¥X¨Ó¡C¦ýÁÙ¬OµL¥ô¦óµ²ªG¡A¥é©»¥H¤Ó¦b¦a²y¶g³ò¬OÀR¤î¡C
³ÒÛ¯YÁYµu²z½×
ªuµÛ¹ï¥H¤Ó¹B°Êªº¤è¦V¡Aªø«×ÁYµu
L = L0 √(1 - v2/c2 )
«ê¦n¥i¥H²Å¦XÁÚ¥i´Ë¡V²ö§Q¹êÅç¡A¦ýª§Ä³©Ê«Ü¤j¡C
·R¦]´µ©Zªº¬Û¹ï½×¡]¬Û¹ï©Êì²z¡^
°ò¥»°²³]¡G
¡]¤@¡^©Ò¦³ºD©Ê¡]§Y¤£¥[³tªº¡^®y¼Ð¨t¤¤¡Aª«²z©w«ß¤£ÅÜ
¡]¤G¡^¥ú³t¹ï¥ô¦óÆ[¹îªÌ¬Ò¬Û¦P
β »P γ
³o¨âÓ¶q±`¦b¬Û¹ï½×¤¤¨£¨ì¡A¥ý©w¸q
β = v / c
γ= 1 / √ (1 - β2)
¥úÀ@
¥ô¦ó°T¸¹»P¥æ¤¬§@¥Î¤£¯à¶W¹L¥ú³t¡A¦]¦¹¬Y¤@®ÉªÅÂI¯à¼vÅT¨ìªº½d³ò¡A¦³¤@Ó·sªºÃä¬É©w¡A¥s¥¿¥úÀ@¡F¦Ó©Ò¦³¯à¼vÅT¨ì¸Ó®ÉªÅÂIªº³¡¤À¡A«h¥st¥úÀ@¡C
¨£¹Ï
¤W¹Ï¤¤¡A¬õÂI¥u¯à¼vÅTÂÅÂI¡A¦Ó»PºñÂI§¹¥þ¤£·|¦³¦]ªG¤Wªº¬ÛÃö©Ê¡C¦P²z¡A¹L¥h©Ò¯à¼vÅT¨ì²{¦bªº¡]¨Æ¥ó¡^ÂI¡A¤]¥u¦b¤@©w¶ZÂ÷½d³ò¤§¤º¡C
¥j¨åª«²z¡G
¨âªÅ¶¡ÂIªº¬Û¶Z¡]¤£½×¨ºÓÆ[¹îªÌ¬Ý¨ì¡^
Δr = √ [ (x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2 ]
¡]ª`·N¡G¤W¦¡¦b®y¼ÐÅÜ´«¤U¨äȤ£ÅÜ¡A§Y®y¼ÐÂà´««Oªø¡^
¨â®É¨èÂIªº¶¡¶Z¡]¤£½×¨ºÓÆ[¹îªÌ¬Ý¨ì¡^
Δt = t 2 - t 1
¬Û¹ï½×¡G
¨â¨Æ¥óÂI¦b®ÉªÅ¤¤ªº¶¡¶Z¡]¤£½×¨ºÓÆ[¹îªÌ¬Ý¨ì¡^
s2 = c2 (Δt)2 - (Δr)2
®É¶¡¼Wªø
Δt = γΔt0
Δt0 = 2h / c
Δt = L / c
¨ä¤¤ (L/2)2= h2 + (x/2)2 ¬G L = √(4h2 + v2Δt2)
«h Δt = L / c = √(4h2/c2 + v2/c2 Δt2) = √(Δt02 + v2/c2 Δt2)
§Y Δt √(1 - v2/c2 )= Δt0
Δt = Δt0 / √(1 - v2/c2 )
§Y Δt = γΔt0
ªø«×ÁYµu
L = L0 / γ= L0 √(1 - v2/c2 )
«²{¤F³ÒÛ¯Y´£¥Xªºªº°²»¡¤½¦¡
¬ì¾Ç¨S¦³¦]¦¹¦Ó·d¶Ã¡Aª«²z©w«ßªº¦ì¶¥¤Ï¦Ó§ó¥[éT¡C
±À¾É¡]¨£½Ò¥»¥H¤ÓªÅ±ô¬°¨Ò¡^
ÀR¤î®É¾÷¨ªø L0 ªº¤ÓªÅ±ô¦V«e¸¦æ³t«× v¡A¶q¨ä¾÷¨ªø«× L
¦bÀR¤î®y¼Ð¨t¸m ¹p®g»Pp®É¾¹¡A¾÷»ó¾×¦í ¥ú§ô±Ò°Êp®É¡A¾÷§ÀÂ÷¶}®Ép®É°±¤î¡A«h L = v Δt0 ¡A¨ä¤¤ Δt0 ¬O proper time¡]¦¹¤@®ÉÄÁ¨S¦³¦b¹B°Ê¡^¡C¥t¥~¡A ±q¾÷¤º¤HÆ[ÂI¦Ó¨¥¡A¬Ý¾÷¥~ÄÁªºÅª¼Æ©TµM¬O Δt0¡A¦ýY¨Ï¥Î¸m©ó¾÷¤ºªº®ÉÄÁ«h¦³®É¶¡¿±µÈ®ÄÀ³ Δt = γΔt0¡A¦]¦¹¥ú§ô³Q¾×¦í¡]¥ý¾B«á©ñ¡^ªº¾ãÓ¬yµ{¯Ó®É Δt ¡A¥L¬Ý¨ì¥ú§ô·Ó®gÂI¨«¤F v Δt ªº¶ZÂ÷¡Aªø«×«ê¬O¾÷¨ªø L0 ¡C
ºØÁ`¦Ó¨¥¤§¡A¥Ñ©ó¦³®É¶¡¿±µÈ®ÄÀ³¡A¾÷¤ºÄÁp±o¤§®É¶¡ Δt ¤ñ¾÷¥~ÄÁp±o¤§®É¶¡ Δt0 ªø¡AÃö«Y¬° Δt = γ Δt0¡A¬G §Ú̦³
L = v Δt0
L0 = v Δt = v γ Δt0
±o L = L0 / γ
¬G¶q±o¤§¾÷¨ªøÁYµu 1/ γ ¿
Åp¥Í¤l¥Ù¬Þ
¤©¬ÞÂI¡G¤ÓªÅ¡]°ª³t¡^®È¦æ¦^¨Ó¡A¨âÓ³£¤ñ¹ï¤è¦~»´¡A¥Ù¬Þ¡C
¸ÑÄÀ¡G§¤¤ÓªÅ²îªº¡An§éªð¦^¨Óªº¨º¤@Ó¸û¦~»´¡A¤À§O±q¦a²yÆ[ÂI»P¤ÓªÅ²î²yÆ[ÂI¬Ò¦p¦¹¡C
§@ªk¡G§Q¥Î«e±¤w±À±oªº®É¶¡©µ¿ð¥H¤Îªø«×ÁYµu
¥»°ÝÃD¤§ γ Ȭ° 1/ √(1- 0.652) = 1.32
¦a²y¤H¬Ý¡G¤ÓªÅ²î 0.65 ¿¥ú³t¦V¥k¡A ©è¹F 3.25 ¥ú¦~³B«áì³t§éªð¡A³æµ{¶O®É 5 ¦~¡A¬G 10 ¦~ªð©è¦a²y ¡C¦a²y¤Wªº¤H¤]ª¾¹D¤ÓªÅ²î¤W®É¶¡¬y¸ûºC¡A10¦~ / γ= ²î¤W¦~¡A¤J¥N γ È ±o 10 ¦~/ 1.32 = 7.576 ¦~¡C
¤ÓªÅ¤H¦³¦b²¾°Ê¡A¦b¥L¬Ý°_¨Ó¶ZÂ÷ (¦³ªø«×ÁYµu) ³æµ{¬° 3.25*1/1.32 = 2.462121... ©¹ªðÁ`ªø 4.9242... (¦Ó¤£¬O 6.5 ¥ú¦~)¡A¬G¨ä¦æµ{¶O®É 4.9242 ¥ú¦~ / 0.65 ¥ú³t = 7.576 ¦~¡C
½Ðª`·Nªð¯è®É³t«×¬O -0.914 c ¡A¦Ó¤£¬O¨â¿ 0.65c ªº -1.3 c ¡C
¡]½Ð¾\Ū½Ò¤å pdf ¦@¤T¶¡^
·sªº³t«×¬Û¥[¤½¦¡
¤£¦A¬O u'x = ux + v
¦Ó¬O¡]±À¾É¨£½Ò¥»¡^
¬Û¹ï½×ÀW²v°¾²¾
ÀW²v»P®É¶¡¦³Ãö¡A¯U¸q¬Û¹ï½×§i¶D§ÚÌ¡A¦³¬Û¹ï³t«×ªºµo®gÅé¡A¥Ñ©ó®É¶¡¶¡¹j§ïÅÜ¡A¦]¦¹ÀW²v¤]·|§ïÅÜ¡C³o»PÁn¾Ç³£¤R°Ç®ÄÀ³ªºì²z¬O¤£¦Pªº¡C
¸Ô²Ó±À¾É¨£ http://en.wikipedia.org/wiki/Relativistic_Doppler_effect
³]¬Û¤¬»·Â÷
±q¥ú·½ªºÆ[ÂI¡A±q²Ä¤@Óªi«e«ê¹F¨ì±µ¦¬ªÌ¡A¦¹®É²Ä¤GÓªi«e¶Z±µ¦¬ªÌ λ¨º»ò»·¡C
nÅý²Ä¤G¹Dªi«e¥H¥ú³t c °l¤W±µ¦¬ªÌ¡A¦ý±µ¦¬ªÌ¤]¦P®É¥H v «á°h¤¤¡A°l¤W¡]²Ä¤Gªi«e³Q±µ¦¬¨ì¡^®É²Ä¤Gªi«eÁÙn¨« λ+ v t0 ³o»ò»·¡A¬O¥H¥ú³t c ¨Ó¨«ªº¡A¦³¥H¤UÃö«Y¦¡
λ+ v t0 = c t0
¦@¶O®É
t0 = λ / (c - v)
¦¹ λ¬°ªiªø¡A¬G¦³ λ = c / f0¡A¦]¦¹
t0 = λ / (c - v) = (c / f0) / (c - v) = 1/ [(1 - β) f0]
±µ¦¬ºÝ¬O²¾°Ê¤¤ªº¡A¬G®É¶¡¹L¤ñ¸ûºC¡A¦¹¤@¨Æ¥ó¤§¾ú®É t0 ¹ï±µ¦¬ºÝ¦Ó¨¥·|¸ûµu
t = t0 / γ
¬G
f = 1/ t = γ[(1 - β) f0]
= [(1 - β) f0] / √ [(1-β) (1+β)]
= f0 √[ (1-β) / (1+β)]
= f0 √[ (c -v) / (c + v)]
(»·Â÷®É)
f = f0 √ [ (c-v) / (c+v) ]
(±µªñ®É)
f = f0 √ [ (c+v) / (c-v) ]
(transversive)
³ÒÛ¯YÂà´«
©úÅã»P¦÷§Q²¤Âà´«¤£¦P¡A®É¡BªÅ¬O¦P¬°¶qªº¨âÓ¤À¶q¡]¦P¨B®øªø¡A¹³±ÛÂà¤@¯ë¡^¡A¬G®ÉªÅ¬O¤@Å骺¡C
¦÷§Q²¤Âà´«
x' = x - vt
y' = y
z' = z
t' = t
³ÒÛ¯YÂà´«
x' = γ ( x - vt )
y' = y
z' = z
t' = γ ( t - vx/c2 )
³ÒÛ¯YÂà´«¤Uªº¤£Åܶq
§@·~¡GÅçÃÒ«e±©Ò©w¤Î s ¬O¤@Ó³ÒÛ¯YÂà´«¤Uªº¤£Åܶq
¥H¤£Åܶq¨Ó¼gª«²z©w«ß¤½¦¡
¡]¤~¯à¯u¥¿¬ðÅ㤽¦¡¤¤¦Uª«©Ê©Î¶qªº¯S¼x¡A¦Ó¤£¥u¬O¦¡·s¼g¡C¡^
¦b¬Û¹ï½×¦Ò¼{¤U¡A¦V¶q³£¬O¥|ºûªº¡A¦Óª«²z©w«ß«h§Î¦¡¤Wnº¡¨¬³ÒÛ¯YÂà´«¤£ÅÜ©Ê¡C
¨äªø«×¡]µ´¹ïÈ¡^·|º¡¨¬³ÒÛ¯YÂà´«¤£Åܩʪºª«²z¶q¡A¦p¡G¡]¦ýµ´¹ïÈ©w¸qùتº¥¤è©M¡^n¥Î - + + + «Y¼Æ¡A¥s¶{¥i¤Ò´µ°òµ´¹ïÈ (norm)¡^
®É¨è¡B¦ì¸m¬O¦b¦P¤@Ó¥|ºû¦V¶q¤§¤º¡GXμ = ( ct, x, y, z )
¥ú³t¡B³t«×¬O¦b¦P¤@Ó¥|ºû¦V¶q¤§¤º¡GUμ = ( γc, γvx,γvy,γvz )
¯à¶q¡B°Ê¶q¬O¦b¦P¤@Ó¥|ºû¦V¶q¤§¤º¡GPμ = m Uμ= ( γm c,γmvx,γmvy,γmvz) = ( E / c, px, py, pz )
¹q¦ì¡B¦V¶q¦ì¦PÄݤ@Ó¥|ºû¦V¶q¤§¤º¡G Aμ = ( Φ/ c, Ax, Ay, Az )
·sªº°Ê¶q»P¯à¶q¤½¦¡
°Ê¶q
¤£¦A¬O p = m v ¡A¦Ó¬O
p = γ m u
¨ä¤¤ u ¬O¬YÆ[¹îªÌ¬Ý¨ìªº³t«×¡A¦Ó m ¥Ã»·«üªº¬OÀR¤î½è¶q¡C³o¼Ë©w¤~¯àº¡¨¬°Ê¶q¬ÛÃö©w«ß¡]¦p°Ê¶q¦u«í¡^¦b¬Û¹ï½×¤¤¹ï©Ò¦³Æ[¹îªÌ©w«ß¤£ÅÜ¡C
Halliday ½Ò¥»±Ðªk¦p¤U¡G»Ý«·s©w¸q°Ê¶q¡A¥H¨Ï°Ê¶q¦u«í©w«ß¾A¥Î©ó¤£¦P¬Û¹ï³t«×ªºÆ[¹îªÌ¡G
p = m × Æ[¹îªÌ®y¼Ð¨t¤¤¤§¶ZÂ÷ / ÀR¤î®y¼Ð¨t¤¤¤§®É¶¡ = m Δx / Δt0
¡]Æ[©À¡Gproper time ¤~¬O¹ïÀ³¨ì¯Â¶qªº®É¶¡¡A©ñ¦b¤À¥ÀªºªF¦è¥²¶·n¬O¯Â¶q¡^
¤O
¤Oªº¥¿½T¤½¦¡¬O
F = d p / d t
¡]¤£¯à¦A¥Î F = m a¡A§Y¨Ï¦³©Ò¿×ªº¬Û¹ï©Ê½è¶q mr¡A¤]¤£¯àª½±µ§â mr ¥N¤J F = mr a ¡AGiancoli ¥mÀ{¡^
¯à¶q
¥ý¥u¦Ò¼{°Ê¯à¡]¦ì¯à¦b¦¹µLÃö¡^¡A¥»¨Ó¬O 1/2 m v2¡A¦ý¦b¬Û¹ï½×¤U¡A°Ê¶q©w¸q¤w¸g¤£¦P¡A
¯à¶q¤½¦¡ªº±À¾É
W = ∫ F dx = ∫ dp/dt dx
¨ä¤¤ dp / dt = d(γm u) / dt = m/[(1 - v2/c2)(3/2)] dv/dt
¡]¿n¤À¹Lµ{¨£½Ò¥»¡^
¥\¡Ð¥\¯à©w²zÄ~Äò¾A¥Î¡A§Y ΔK = W ¡A«h±o
K = (γ-1) m c2
Bauer & Westfall ½Ò¥»¡A¬O¥ý»¡©ú·R¦]´µ©Z´£¥Xª«ÅéÀR¤î®É E0 = m c2¡A¬G¥[¤J°Ê¯à«á±o
E = γm c2
¤W¦¡ E ¬O¬Û¹ï½×¤U¤§Á`¯à
ÀR¤î®É E0 = m c2¡A²¾°Ê®É¡A¦h¤F γ ªº«Y¼Æ¦]¤l¡A E = γE0 ¡A§Y E = γm c2 ¡C
°Ê¶q¡Ð¯à¶qÃö«Y
«D¬Û¹ï½×¤U E = p2 / 2m ¡A¦b¬Û¹ï½×¤U
¥Ñ©ó E = γm c2 ¡Bp = γm v¡A¦Ó¦³
E2 = p2 c2 + m2 c4
½Ðª`·N³oÓ¦¡¤l¤¤¨S¦³ γ¡Bβ µ¥¬Û¹ï³t«×¦³Ãöªº¶q¡A¤W¦¡¬O¤@Óº¡¨¬¤£Åܩʪº¤èµ{¦¡¡C¨ä¤¤
m2 c4 = E2 - p2 c2 ©Î m2 = (E / c2)2 - (p/c)2 ¬O¤@Ó®y¼ÐÂà´«¤£Åܶq¡C
³Ì¦³¦Wªºª«²z¤½¦¡
¤W¦¡ E2 = p2 c2 + m2 c4 ¡A¦bÀR¤îªºª¬ºA¡]©Î®y¼Ð¨t¡^ v = 0 ¡A¬G p = γm v = 0
±o E2 = m2 c4¡A§Y
E = m c2
2005¦~¡A¥@¬Éª«²z¦~
¥t¤@ºØ±À±o E = m c2 ªº¤è¦¡
·R¦]´µ©Z¦b´M¨DÀò±o¬Û¹ï½×¤§¯à¶q¡]°Ê¯à¡^¤§®É¡AÂǥѦҼ{§C³t¤U°Ê¯àÀ³¸Ón«²{ 1/2 m v2 ªºµ²ªG¡A µo²{¥²»Ý´î¥h¤@Ó±`¼Æ¶µ m c2 ¤~¥i±o¨ì¡A
»¡©ú¦p¤U¡G
°Ê¯à K = (γ - 1) m c2 = m c2/ √[1 - (v/c)2] - m c2
·í v << c ®É¡A ®õ°Ç®i¶} γ= 1 + 1/2 β2
ÅçÃÒ¡G®õ°Ç®i¶} γ= [1 - β2](-1/2) = 1 + (-1/2) [1 - 0](-3/2) (-1)β2 + ... = 1 + 1/2 β2 + ...
¹êÅçÃÒ©ú
²É¤l (μ) °IÅܪº¥Í©R´Á
°ª³t²¾°ÊªÌ¥Í©R´ÁÅܪø
³Q±a¤W¸¾÷¡]¶¦a²y¥|°é¡^ªºì¤lÄÁ
ªº½T»P¦a±¤Wªº¤£¦P
¨ä¥L¬Û¹ï½×ªºÃÒ¾Ú
beta-®g½u¦bºÏ³õ¤¤Ås§éªº¨¤«×¡A»P½è¶q (°Ê¶q) ¦³Ãö
ì¤lùتºªñ¥ú³tªº¹q¤l¡A¦³®Ä½è¶q (°Ê¶q) n×¥¿
¬Û¹ï½×¶q¤l¤O¾Ç¡Ð¹q¤l¦Û±Ûªºµo¥Í
¼s¸q¬Û¹ï½×
¤Þ¤O»P¹B°Êªº¥[³tµ¥®Ä
ªÅ¶¡¡]®ÉªÅ¡^¨üª«½èÅs¦±
·R¦]´µ©Z¤èµ{¦¡
¤èµ{¦¡ªº¼Ë¤l¦p¤U¡G
G£g£h - £N g£g£h = k T£g£h
¤W¦¡ªº·N«ä¬O
®ÉªÅ¦±²v - ¦t©z¶µ = ª«½è±K«×
¨ä¤¤ £N¬O¦t©z±`¼Æ¡Bk ¬O«¤O±`¼Æ¡CùØÀY¬°¤FÀç³y¥X«í©w¦t©z¡]§_«hì¤èµ{¦¡ªº¸Ñ«D¿±µÈ§Y¦¬ÁY¡^¡A¦Ó³]ªºÊï®ø¶µ¡C
1929 ¦~¦b«¢§B±o¨ì¦t©z¿±µÈªºÃҾڮɡA·R¦]´µ©Z¦ÛºÙ³o¬O¥L¤@¥Í³Ì¤j³Ì¿ù»~¡C¡]¦³¼Æ¾Ú¤ä«ù¦t©z¿±µÈ¬O¥[³t¤§«á¡A¦³¤H¦]¦¹»¡¡AÃø¨ì·R¦]´µ©Zªº¦t©z¶µ²×¨sÁÙ¬O¥[¹ï¤F¶Ü¡H¡^
¶Â¬}
³o¬O·R¦]´µ©Z¤èµ{¦¡ªº¤@ºØ¸Ñ¡A½è¶q±K«×¤j±o®ÉªÅÅs¦±¨ì³s¥ú³£¥X¤£¨Ó¡C
¦t©z¿±µÈ
³o¤]¬O·R¦]´µ©Z¤èµ{¦¡¸Ñªºªº¤@ºØ¸Ñ¡A¦ýª`·N½è¶qªºªþªñ¨Ã¥¼¿±µÈ¡C
¹êÅçÃÒ©ú
¤Ó¶§I«áªº¬P¥ú¡]«¤O³zÃè¡^¡]½Ò¤å¶}³¹¹Ï«h¬°»Èªe¨tªº¡^
¤ô¬P¤½Âà¡]ªñ¤éÂI¡B»·¤éÂI¡^ªº¶i°Ê
¬Û¹ï½×¦b¥Í¬¡¬ì§Þ¤WYÀ³¥Î
¥þ²y½Ã¬P©w¦ì¨t²Î¡]GPS¡^
http ì¤lÄÁ
¯U¸q»P¼s¸q¬Û¹ï½×³£¦³¥Î¨ì
¯U¸q¡G½Ã¬P¹ï¦a±¦³³t«×
¼s¸q¡G½Ã¬P»P¦a±¨ü«¤O¤£¦P
ì¤lÄÁ¤§¶¡ªº¦P¨B¤Æ¬Oºë½T¨ì 10-13¡A¦Ó¥H½Ã¬P³t«× 4 km/s ¡A¨ä®É¶¡¿±µÈ»P§_ªº¬Û¹ï»~®t¬O 10-10¡A¬ÝÁö¤£¤j¡A¦ý¤ñì¤l ÄÁ¤§¶¡ªº¦P¨B¯à¹F¨ìªººë·Ç«×ÁÙ®t¤@¤d¿¡A¤£§@×¥¿±N¨Ï©w¦ìµ²ªG¤j¤j¥¢·Ç¡C