¸¨Å骺¹B°Ê

 

¤@¡B¹q¸£¼ÒÀÀ¹êÅç¡G¦Û¥Ñ¸¨Åé°ÝÃD

°ÝÃD¡G·Qª¾¹D¬¶¼u¥´¨ì¨ºùØ

ª«²z¶q¡G­y¸ñÀH®É¶¡ªºÅÜ¤Æ x(t), y(t)

ª«²z©w«ß¡]¼Æ¾Ç¼Ò«¬¡^¡Gf = m a ¡A¦b¦¹ f ¯Âºé¨Ó¦Û©ó­«¤O ¡]²ÊÅé¦r¥Nªí¬O¦V¶q¡^

²É¤l¦b¦aªíªþªñ©Ò¨üªº­«¤O¬O g ¡]g = GmM/R¡^¡Ag = 9.8 ¤û¹y/¦Ì

f = ma = m ( ax ex + ay ey ) ¡A¨ä¤¤ ax = dvx/dt ¡B ay = dvy/dt

¥u¦³­«¤O®É¡Af = fy ey = g m ey ¡A¤]´N¬O»¡ fy = g m

ºtºâªk¡G

§Q¥Î Euler ºtºâªk¡G

¦ì¸m xn+1 = xn + vx,n Δt ¡F yn+1 = yn + vy,nΔt

³t«× vx,n+1 = vx,n + ax,n Δt ¡F vy,n+1 = vy,n + ay,nΔt

 

¶i¶¥¸É¥R¡G¹ï­pºâí©w©Ê¤Îºë½T«×¡A¦³§ó¦nªº¿ï¾Ü

Euler-Richarson ºtºâªk¡A ¥ý¨D¥X

ax,n = fx(rn,vn,t)/m

vx,mid = vx,n + (1/2) ax,nΔt

xmid = xn + (1/2) vx,nΔt

ax,mid = fx( xmid, vx,mid, t+(1/2)Δt ) / m

µM«á¤~°µ

vx,n+1 = vx,n + ax,midΔt

xn+1 = xn + vx,midΔt

µù¡G¬°¤°»ò Euler-Richarson ºtºâªk ¤ñ Euler ªº¦n¡A¥i°Ñ¦Ò Gould ½Ò¥»¤Wªº±À¾É¡G p1¡Bp2

 

µ{¦¡¬yµ{¡G

(0) ¶}©l¡A«Å§iÅܼÆ

(1) °Ý½è¶q¡Bªì³t«×¡]§tªì³t²v»P¨¤«×¡^

(2) «Ø¥ß¦ì¸m x »P y¡B³t«× vx »P vy ªºªì©l­È

(3) ¥Îºtºâªk¨D¤U¤@­Ó¤p®É¬q Δt «áªº¦ì¸m»P³t«×

(4) µe¥X²É¤l¦ì¸m¨ÃÀˬd°ª«×¬O§_¤v¹F¦a­±¡A¥¼¹F¦a­±«h¦^¨ì (3)

(5) °Ý­n¤£­n¦A®g¤@¦¸¡A­Y­n«h¦^¨ì (1)

(6) µ²§ô

 

§Aµ¥¤£¤Î¤F¶Ü¡H¥ý°½ª±¤@¤U¦Ñ®v¤v¸g°µ¦nªº¥i°õ¦æÀÉ cannon.x

§A°µ¤£¥X¨Ó¶Ü¡H¥ý°½¬Ý¤@¤U¦Ñ®v¤v¸g¼g¦nªº½d³òµ{¦¡ cannon.f cannon.f.txt

¡]«D¤£±o¤w½Ð¤Å¥ý¬Ý¡^

 

°Ê°Ê¸£¡B°Ê°Ê¤â¡A¦Û¤v¦A§ï³y¡]©Î¦^®a°µ¡^¡G

1. µe­Ó¤j¯¥§â¬¶ºÞªº¨¤«×ªí²{¥X¨Ó

2. ¥H¤õÃÄ¥]¸Ë¶ñ¼Æªí²{¬¶¼u°Ê¯à¡AÂà´«¦¨ªì³t²v

3. ª«Åé³Q¬µ¯}¤ùªº¼u¥X¡]°t¦X¶Ã¼Æ²£¥Í¾¹ ran3.f¡A¨Ï¥Î¤èªk¡^

4. ¸Õ¼g¤@­Ó·Ï¤õµ{¦¡¡A·|¦h¬q¶}ªáÅܦ⪺

 

¤ÀªR»P°Q½×¡G

·Q¹w´ú¬¶¼u¥´¨ì¨ºùØ¡A¥D­n¬O°ò©ó¨º¤@±øª«²z©w«ß¡H

¤°»ò¼Ëªº¥ý¨M¡]ªì©l¡^±ø¥ó¨M©w¤F¬¶¼uªº­y¸ñ¡]©M¸¨ÂI¡^¡H

¦P¼Ëªº¤õÃÄ¥]¥R¶ñ¼Æ¡A«ç»ò¥´¬¶¼u¤~­¸±o³Ì»·¡H

 

 

¤G¡B¹q¸£¼ÒÀÀ¹êÅç¡G¨üªÅ®ðªý¤Oªº¸¨Åé

°ÝÃD¡G¦b¦³ªÅ®ðªý¤Oªº±¡ªp¤U¡A¬¶¼u­y¸ñÅܱo¦p¦ó¡H

ª«²z¶q¡G¤@¼Ë¬O­y¸ñÀH®É¶¡ªºÅÜ¤Æ x(t), y(t)

ª«²z©w«ß¡]¼Æ¾Ç¼Ò«¬¡^¡Gf = m a¡A¨ü¤O f ¦P®É¥]§t¤F­«¤O¤ÎªÅ®ðªý¤O

ªÅ®ðªý¤O«D±`½ÆÂø¡]¦]¦¹­¸¾÷©Î°ª³t¤õ¨®ªºªý¤O³]­p»Ý­n¾a­·¬}¹êÅç©Î¹q¸£¼ÒÀÀ¨Ó¶i¦æ¡^¡A°ò¥»¤W¥¦¬O»P³t²v¦³Ãö¡A³t²v¶V°ªªý¤O¶V¤j¡AÀR¤îªºª«Åé«h¨S¦³ªÅ®ðªý¤O¡C¥i¨£¥¦¬O¤@­Ó»P³t²v¦³Ãöªº¶q¡A±`¨£ªºÂ²¤Æ¤½¦¡¡A¦³ÀH³t²v¤@¦¸¤è§e¥¿¤ñªº¡A¤]¦³ÀH¨â¦¸¤è§e¥¿¤ñªº¡A¤è¦V¬O³t«×¤Ï¦V¡]­t¸¹¡^ªº

Fd = - k1 v

Fd' = - k2 v2

¥Ñ©ó¦³ x »P y ¨â­Ó¤À¶q¡A°²³]³t«×»P¤ô¥­½uªº§¨¨¤¬° θ¡A§Y θ = tan-1(vy/vx) [ Fortran µ{¦¡¼g¦¨ theta = atan(vy/vx) ] ¡A

Fd,x = Fd cosθ

Fd,y = Fd sinθ

¡]©ÎªÌ¬O¡Aª½±µ¥Î vx/√(vx2+vy2) ¤Î vy/√(vx2+vy2) ·|¤ñ¥ý¨D θ = atan(vx/vy) ¨ú¨¤«×¤~¥h¨D cos(θ) ¤Î sin(θ) §ó¦n¡^

¦]¦¹¡A¦b¦³Ãö¤O¤§³¡¤Àªº¤½¦¡¡A

fx = Fd cosθ

fy = - m g + Fd sinθ

¨ä¥Lªº³¡¤À¡A»P¤W¤@­ÓijÃD¬Û¦P

·sijÃD¡G¦p¦ó¨D±o«Ç®ðªý¤O«Y¼Æ k¡H

§Q¥Î²×ºÝ³t«×¡A§Y««ª½¸¨¤U¹Lµ{¤¤­«¤O»Pªý¤O¹F¥­¿Å¡A¨Ï¦X¤O¬°¹s¤£¦A¥[³t¡A¦Ó§eµ¥³t¹B°Ê®Éªº³t«×¡C

¦X¤O = 0 = - m g + Fd = - m g + k1 vy2

§Y k1 = vy2 / (m g)¡A¦¹²×ºÝ³t«×¥iÂǥѹêÅç¶q±o

¤@­Ó¯»µ§ÀY¤j¤pªº¥Û¤l¨ä²×ºÝ³t«×¤j¬ù¬O¨C¬í¤T¤Q¤½¤Ø¡C¥t¥~¡A¤@­Ó­« 0.254 §J ¡B¥b®| 2.54 ¤½¤Àªº«O§QÀs²y¦³¥H¤Uªº¹ê´ú¼Æ¾Ú¡]¤Þ¥Î Physics Teacher 24, 153 (1986) )

®É¨è¡]¬í¡^ ¦ì¸m¡]¤½¤Ø¡^
-0.132 0.0
0.0 0.075
0.1 0.260
0.2 0.525
0.3 0.870
0.4 1.27
0.5 1.73
0.6 2.23
0.7 2.77
0.8 3.35

·Q·Q¬Ý¡A§Ú­Ì­n«ç»ò±q¤W¦Cªº¼Æ¾Ú¨D±oªÅ®ðªý¤O«Y¼Æ k¡H

 

¦Ñ®v¼gªº½d¨Òµ{¦¡¡Gstyrofoam_k.f.txt styrofoam_k.f styrofoam_k.x

¤W­±ªí®æ¼Æ¾Úªº¸ê®ÆÀÉ¡Gstyrofoam.txt

¡]¾¨¶q¦Û¤v·Q¡A¤£·|¦A°Ñ¦Ò¡^

ºtºâªk¡G

¦P¼Ë±Ä¥Î Euler ©Î Euler-Richardson ºtºâªk

 

µ{¦¡³]­p¡G

»P¤W¤@­ÓijÃD¬Û¦P

°Ñ¦Ò½d¨Òµ{¦¡

cannon_drift.f cannon_drift.f.txt cannon_drift.x

 

½è¶q»PªÅ®ðªý¤O«Y¼Æ¹ï©ß®gÅé­y¸ñªº¼vÅT

mass = 1.0, k = 2.0

mass = 0.5, k = 1.0

mass = 2.0, k = 2.0

 

 

 

¤ÀªR»P°Q½×¡G

¥H¦P¼Ëªº¤O¹D¦V¤W©ß¤@­Ó¤p¥Û¤l¡A¦b¦³ªÅ®ðªý¤O»PµL«ÇªÅ®ðªý¤Oªº¨âºØ±¡ªp¤ñ¸û¤U¡A¨º¤@ºØ·|¦bªÅ¤¤°±¯d¸û¤[¡H

¨º¤@ºØ­y¸ñ¹³¦Ð¤ò²y¡H¨º¤@ºØ¹³¹]²y¡H

¦b¦³ªÅ®ðªý¤Oªº±¡ªp¤U¡A©ß®gª«ªº¨¤«×­n¦p¦ó³]©w¨ä¶ZÂ÷¤~·|³Ì»·¡H

 

 

¬D¾Ô¡G

¸ÕµÛ°µ¥X§A¦Û¤vªº¼««ã³¾¹CÀ¸ (§Þ³N¤Wªº²Ó¸`Åwªï»P±Ð±Â°Q½× ) ¡C

 

 

§@·~¡G¼u¯]¥xµ{¦¡

¼u¯]»P¥ú·Æ°v¤lªº¥æ¤¬§@¥Î¼Ò¦¡

N = Nx ex + Ny ey

| N | = 1

V dot N = Vx * Nx + Vy * Ny

¸I¼²«á V ¥­¦æ©ó N ¤Wªº¤À¶q¦]¤Ï¼u¦Ó¤è¦V¬Û¤Ï¡A»P N ««ª½ªº¤À¶q«hÄ~Äòºû«ù¡A¦]¦¹¸I¼²«á

V¢r = (-1)* (V dot N) N

V// = V - (V dot N) N = V + V¢r

·sªº³t«×«h¬° V// + V¢r

 

¦Ñ®v´£¨Ñªºªº½d¨Òµ{¦¡ pinball.f pinball.f.txt pinball.x ¡A¿é¤J ½d¨Ò

 

°Ê¤â§ï³y»P°Q½×¡G

±N§Aªºµ{¦¡§ï¬°¤@¦¸ÄÀ©ñ¨âÁû¡B¤TÁû¼u¯]¡C

¦pªG¬O¹ï¼u¯]¦³¼¯À¿¤Oªº°v¤l¡A«h¼u¯]»P¤§¥æ¤¬§@¥Î¼Ò¦¡¦p¦ó¡H

 

 

 

PGPLOT¡G PGPT (n,x,y,SYMBOL)

 

 

¶Ã¼Æ²£¥Í¾¹ªº¥Îªk

¥H ran3.f ¤º§tªº ran3(iseed) ¨ç¦¡¬°¨Ò¡G

iseed = 7
x = ran3(iseed)
y = ran3(iseed)

·Ç³Æ¥ô·N¤@­Ó¾ã¼Æ­È©ñ¦b¬Y­Ó¾ã¼ÆÅÜ¼Æ iseed ªº­È¤º¡A¨Ì¤W­zªº¤èªk¨C¦¸¨Ï¥Î ran3( ) ¡A«h x »P y ³£·|Àò±o¤@­Ó 0.0 ¨ì 1.0 ¤§¶¡ªº¼Æ­È¡A¨C¦¸ªº¼Æ­ÈÁöµM¤£¤@¼Ë¡A¦ý³o¨Ç¼Æ­È¦b 0 ¨ì 1 ¤§¶¡¥X²{ªº¾÷²v¬O§¡µ¥ªº¡C¥t¥~¡Aª½±µ§â¾ã¼Æ¶ñ¤J ran3( ) «o¨Ã¤£¤ä´©¡A¦p xx = ran3(7)¡A·|¾É­P "°Ï¬q¿ù»~ (Sgementation Fault)" ¡C

¸Õ¸Õ¬Ý¡A¼g¤@­Ó¥á»ë¤lµ{¦¡¡C¨Ò½d¡Gdice.f ¡A°O±o»P ran3.f ¤@°_½sĶ¡A¦p gfortran diec.f ran3.f <Enter>¡C

¥t¥~ gfortran ¤ä´©¤º«Ø°Æµ{¦¡ random_number(¹ê¼ÆÅܼÆ)¡A´N¤£¥²¥t¥~¥Î¥~³¡ªº¶Ã¼Æ¨ç¦¡¤F¡A¥i°Ñ¦Ò¥t¤@»ë¤lµ{¦¡½d¨Ò dice_gfortran.f¡C­«³]¶Ã¼ÆºØ¤lªº°Æµ{¦¡¬O random_seed ²Ó¸`½Ð¨£¡G http://www.nsc.liu.se/~boein/f77to90/a5.html#section21c

 

¶i¶¥¾\Ū¡G

Gould and Tobochnik, An Introduction to Computer Simulation Methods -- Applications to Physical Systems, Addison Wesley (1996) Chapter 2, Chapter 3