±`·L¤Àµ{¨D¸Ñ¡G°ò¥»°ÝÃDåªR¡A¶ø¨Ì°Çªk¡B®õ°Ç®i¶}»P°ª¶¥¤èªk
·L¤À¤èµ{¦¡
·L¤À¤èµ{¦¡¬O¤èµ{¦¡¡A©Ò¥H¦³µ¥¸¹¡A¨Ã¥B«Ý¨D¸Ñªº¥¼ª¾¨ç¼Æ¦³¥H¾É¼Æ¡]¹ï¨ç¼Æªº¦ÛÅܼƷL¤À¡^¥X²{¦b¦¡¤l¤¤ªÌ¡A§Y¬°·L¤À¤èµ{¦¡¡C¡]¦pªG§¹¥þ¨S¦³·L¤À²Å¸¹¥X²{¦b¦¡¤l¤¤ªº´N¤£ºâ¡^
¦b·L¤À¤èµ{¦¡¤¤¡A¤S¤À¡G
±`·L¤À¤èµ{¦¡ ¡@(Ordinary Differential Equation)
¥u¦³¤@ÓÅܼÆ
°¾·L¤À¤èµ{¦¡¡@ (Partial Differential Equation)
¦³¦h©ó¤@Ó¦ÛÅܼÆ
³B²z°ª¶¥·L¤À¤èµ{ªº(¼ÆÈ)¤èªk
¤@Ó±`·L¤À¤èµ{¦¡ªº¤@¯ë§Î¦p¤U¡G
³z¹L¥O¤@¶¥¾É¼Æ y'(x) = z(x)¡A´N¥i¥H§â쥻¤@Ó¤G¶¥ªº ODE ¤Æ¦¨¨âÓÁp¥ßªº¤@¶¥¤§ ODE¡A¦p¤U¡G
¤@Ó¤G¶¥ ODE 쥻´N»Ýn¨âÓ±ø¥ó¨Ó¨M©w¨âÓ«Ý©wªº¿n¤À±`¼Æ¡A¦Ó¨âÓ¤@¶¥ªº ODE «hÅܦU»Ý¤@Ó¡A¤]¬O¨âÓ¡A¦]¦¹è¦n¡A§¹¥þ¨S¦³§ïÅÜ쥻¸Ó¦³¤§¸Ñªº¥»½è¡C¦P²z±À¤§¡A¥ô¦ó n ¶¥ ODE ¬Ò¥iµ¥®Ä¦aÂà´«¬° n Ó¤@¶¥ªº ODE¡C¦]¦¹¡A§ÚÌ©Ò»ÝnÃö¤ßªº¬O¡A¹³¨ã¦³¥H¤U³oºØ ³q¦¡§Î¦¡ªº¤@¶¥ ODE ¸Ó¦p¦ó¨D¨ä¼ÆÈ¸Ñ yi(x)¡Aª`·N y1¡By2¡B...¡ByN ¤À§O¥Nªíì«Ý¨D¨ç¼Æ y(x)¡By'(x)¡B...¡By(N-1)(x) µ¥¡A¤@¦@¦³ N Ó¡An¦P®Éº¡¨¬¤U¦C N ±ø¤èµ{¦¡¡G
ª`·Nµ¥¸¹¥k¤âÃ䪺 fi ¥i¥H¬O¦U¶¥¾É¼Æ yi ªºÅã¨ç¼Æ¡C
Euler ºtºâªk
¤@¶¥·L¤À¤èµ{¦¡ªºµ{¦¡
³Ì¤@¯ë§Î¦¡ªº¤@¶¥·L¤À¤èµ{¦¡¡A¬O¦p¤Uªº§Î¦¡¡G
dy/dx = f(x,y)
¨ä¤¤ f(x,y) ¥i¦¸¬O¥ô¦ó¥H x, y ¬°¦ÛÅܼƪºÅã¨ç¼Æ¡C¦b·L¤À¤èµ{¦¡ªº°ÝÃD¤¤¡Af(x,y) ¬°©Òµ¹©wªº¤wª¾¡A¦Ó y(x) «h¬O¥¼ª¾¥B§Æ±æ¨D±oªº¸Ñ¡C
§ÚÌn¦p¦ó¨D¸Ñ y(x) ¡H
Euler ¡]¶ø¨Ì°Ç¡^ºtºâªk
¦b Δx ¡÷ 0 ªº±¡§Î¤U Δy/Δx = dy/dx = f(x,y)¡A¤]´N¬O»¡Δy = f(x,y)Δx¡C
§â x ¤À¦¨³\¦hµ¥¶¡¹jªº¤p³æ¦ì¡A§YΔy ¡Ý yn+1 -yn¡BΔx ¡Ý xn+1 - xn¡A«h¤W¦¡¦¨¬°
yn+1 - yn = f(xn,yn)Δx¡A¤]´N¬O»¡
yn+1 = yn + f(xn,yn)Δx
¤W¦¡´N¬O Euler ºtºâªk¡A¥¦§i¶D§ÚÌ¥unª¾¹D²Ä n ®æªº y(x) È yn¡A´N¥i¥Hºâ±o¤U¤@®æªº y(x) È yn+1¡A ¬G¥unª¾¹D y(x) ¦b¬YÓ x0 ³Bªº°_©lÈ y(x0)
¡]¦b¤£°Ñ¦Ò¥ô¦ó¸ê®Æªº±¡ªp¤U¡An¯à±À¾É¥X Euler ºtºâªkªº¤½¦¡¡^
°ª¶¥¡]»~®t¶µ¡^ªº¤èªk
±q®õ°Ç®i¶}¦¡ªº¨¤«×¨Ó¬Ý¡A
y(x+Δx) = y(x) + y'(x)Δx + O(Δx2)
¤]´N¬O»¡¡A
y(x+Δx) = y(x) + f(x,y)Δx + O(Δx2)
³o¬O©Ò¿×ªº¤@¶¥¤èªk¡A¥¦³Ì°ª¦¸ªººë½T¶µ¬OΔx ªº¤@¦¸¤è¶µ¡A«á±ªº O(Δx2) ¥Nªí©Ò¦³ªº»~®t³£¦bΔx ªº¤G¦¸¤è¡]§t¡^¥H¤W¡C
¹³ Euler ºtºâªk³o¼Ëªº¤@¶¥¤èªk¬O¦³¯ÊÂIªº¡A²³æ¦a»¡¡A¥¦ªº·Ç½T«×¤£°÷¡C©Î³\§A·|·Q¡AΔx ¨ú¤p¤@ÂI´N·|¤ñ¸ûºë½T¡A¤ñ¤è»¡¡A¨ú¬°ì¨Óªº¤Q¤À¤§¤@¤j¤p¡AµM¦Ó¡A³o¤]·N¨ýµÛ¦P¤@Ó°ÝÃDªºªº¤Á³Î°Ï¶¡¼Æ¦h¤F¤Q¿¡A¹Bºâ¦¸¼Æ´Nn¦h¤Q¿¡A¦p¤ñ¶i¦ì»~®t´N·|«Ü¤j¡C¡]©Ò¿×ªº¶i¦ì»~®t¦¨ºIÂ_»~®t¡A¬O«ü¥Ñ©ó¹q¸£¤¤¥u¯à«O¯d¦³Ó¦ì¼Æ¡A¦]¦¹¼Æ¾Úªº³Ì«á¤@¦ì¦b¨C¤@¦¸¶i¦æ¹Bºâ®É«K¤£§K¦³»~®t¡A¥B¹Bºâ¦¸¼Æ¦h®É¡A»~®tÁÙ·|³Q¶i¨ì«e±ªº¦ì¼Æ¡C¡^
§A©Î³\¤S·Q¡A§YµM¦p¦¹¡A¨º´N°µ§ó°ª¦¸ªº¦n¤F¡A¤]´N¬O§âΔx2 ¬Æ¦Ü§ó°ª¦¸¶µªº¤½¦¡¤]¼g¤U¨Ó¡A¤£´N«Üºë·Ç¤F¶Ü¡H¦ý¬O¤£¦æ¡A¦b¨Ï¥Î¹q¸£°µ¼ÆÈpºâ®É¡A§Ú̬Oµ´¹ï¤£¯à§â¨âӫܤpªº¼Æȼ¦b¤@°_ªº¡A¦]¬°¹q¸£¤º¨S¦³¨¬°÷ªº¦ì¼Æ¨Óªí¥Ü¥¦Ì¼¿nªºµ²ªG¡A³o¼Ë°µ©Ò¾ÉPªº»~®t¬O¨aÃø©Êªº¡C
¥b¨B¤èªk
§Q¥Î®õ°Ç®i¶}¦¡¡A¦ý¥u¦b¥b¨B®i¶}ªºµ¦²¤¡A¥i¥HÀ°§U§Ú̫إߧóºë·Çªº°ª¶¥¤èªk¡A¦Ó«o¤@¼Ë¥u»Ýn¥Î¨ìΔx ªº¤@¦¸¤è¡C ¥H¤U¬O Gould »P Tobochnick ªºAn Introduction to Computer Simulation Methods ±Ð¬ì®Ñªþ¿ý¤¤©Ò¤¶²Ð¤§¨âºØªº¤èªkªº¤ñ¸û¡A¨ä¤¤ Euler algorithm ¬O¤@¶¥¤èªk¡A¦Ó Euler-Richardson algorithm «h¬O¤G¶¥¤èªk¡A¤]´N¬O»¡¡Aªí¥Üªk¤´¥u¬OΔx ªº¤@¦¸¤è¡A¦Ó»~®tªº³¡¤À½T¬O¤T¶¥¡]§t¡^©Î¥H¤Wªº O(Δx3)¡A³o¬O«ç»ò¿ì¨ìªº¡AÅý§Ú̬ݥH¤Uªº±À¾É¡G
§Ú̦b³oùؾǨ쪺¸gÅç¬O¡A³z¹L¨DȦb¥b¨Bªº±×²v¡A¦^¨ì¥XµoÂI¥Î¥H±À¶i¿n¤Àªº¤U¤@¾ã¨B¨B¡]¸Ñ·L¤Àªº°ÝÃD¨Æ¹ê¤W³o¬Û·í©ó¬O¿n¤À¡^¡A¦p¦¹ "¥H°h¬°¶i" ªº¤èªk¡A ¥i¥H¤j´T´£°ªºë½T«×¡C¨ä¹ê¡A°£¤F³oÓ¥i¹F¤G¶¥ºë½T«×ªº¤èªk¥~¡A§ó°ª¶¥ºë½T«×ªº¤èªk¤]¬O¦s¦b¡A¨Ã¥B¬O§Q¥ÎÃþ¦üªºµ¦²¤©Ò±À¾É¥X¨Óªº¡C
¥»³æ¤¸¨S¦³°Æµ{¦¡