ÂùÂIÃä¬ÉȰÝÃD¡G°ÝÃDåªR¡A¥»¼xȰÝÃD«¬·L¤À¤èµ{
°ÝÃDåªR
·L¤À¤èµ{°ÝÃDªº¨D¸Ñ¬O¤@©w·|¯A¤Î¨ì«Ý©w±`¼Æªº¡A³Ì°ª¶¥¾É¼Æ¬O´X¶¥´N·|¦³´XÓ¡C¤W¤@³æ¤¸ªº±`·L¤Àµ{¨D¸Ñ¡A§Ú̾Ǩì¤F³B²z©Ò¿×ªì©lȰÝÃDªº¤èªk¡A¤]´N¬O»¡¡A¤@¶}©l´N¤v¸gª¾¹D¨º¨Çªì©l±ø¥ó¡A¦]¦¹§ÚÌ´N¤@ª½¥N¤U¤@¨B¡B¦A¤U¤@¨B¡Aª½¨ì§â¦ÛÅܼƪº½d³ò°µ§¹¬°¤î¡A¾ãÓ¹Lµ{ºâ¬OÆZª½±µªº¡C¨Ò¦p¬¶¼uy¸ñ¡A¥þ¥Ñ¤@¶}©lªºªì³t²v¤Î¬¶¤f¨¤«×©Ò¨M©w¡A´N¬O¤@ºØ¨å«¬ªºªì©lȰÝÃD¡C¤£ºÞ¦ÛÅܼƬO®É¶¡ÁÙ¬OªÅ¶¡¡Aªì©lÈÃþ«¬ªº°ÝÃD¤@¶}©l´N´£¨Ñµ¹¦UÓ¡]°ª¶¥Âà¤Æ¨Óªº¡^¤@¶¥·L¤À¤èµ{¦¡¨¬°÷ªºªì©lÈ¡AÅý¿n¤À¥i¥H¤@¨B¤@¨B¶i¦æ¤U¥h¡C
¦ý¯u¹ê¥@¬É©Òn³B²zªºªº·L¤À¤èµ{¡A¤]¦³¤@¨Ç¨ä±ø¥ó¤£¥þ¬O¦b¦ÛÅܼƶ}©l¿n¤Àªº¨º¤@ÀY´N¨M©wªº¡C¨Ò¦p¡A²GÅé¬y°Ê¬O³Q§½¦b¤@ÓºÞ¤l¤§¤¤¡A§í©Î¬O¹³©¶ªº®¶Àú¤´¦³³Q©T©w¦b¨âÃä¡C
¹ï©ó³æ¤@Ó¦ÛÅܼƪº°ÝÃD¦Ó¨¥¡AÃä¬É±ø¥ó¥uµo¥Í¦b°_ÂI»P²×ÂI¡A¦]¦¹¤~¦³¨âÂIÃä¬É±ø¥ó°ÝÃD³o¼Ëªº¦WºÙ¡C
Ãä¬É±ø¥ó¤£¥u¦bªÅ¶¡®y¼Ð·|µo¥Í¡A®É¶¡®y¼Ð¤]·|¡A¤ñ¤è»¡©Òn¸Ñ¨Mªº°ÝÃD¡A¬O§Q¥Î¤õ¬¶¬¶¥h®gÀ»À»¤¤¬YӰʺAªº¥Ø¼Ð¡A¦Ón¨D¬¶¼u¦b¬Y®É¨è¸©è¬Y¯S©w¦ì¸m¡AµM«á§ÚÌn°Ýªì³t«×¬O¦h¤Ö¡A¸¦æªºy¸ñ·|«ç¼Ë¡C
§ÚÌ©Òn¨D¸Ñªº°ª¶¥±`·L¤À¤èµ{¦¡¡A¤´µM¬Oªí¥Ü¦¨¦hÓ¡]¦b¦¹ NÓ¡^¤@¶¥¾É¼Æªº¦¡¤l¡G
dyi(x)/dx = gi(x,y1,y2,...,yN)
³oùØ i = 1, ...,N ¡A¦ý N ÓÃä¬É±ø¥ó¦³ n1 Ó¦b¥ªÃä x1 ÂI¡Bn2 Ó¦b¥kÃä x2 ÂI¡]n1 + n2 = N¡^¡A¤À§O¬O¥H¬ù¨î±ø¥ó¤èµ{¦¡¡]constraint equations¡^ªº§Î¦¡¼g¤U¡G
B1j(x1,y1,y2,...,yN) = 0 , ¨ä¤¤ j = 1,2,...,n1
B2k(x2,y1,y2,...,yN) = 0 , ¨ä¤¤ k =1,2,...,n2
¥H¤W©w¸q¤F§Ú̦b¥»³¹©Òn¨D¸Ñªº°ÝÃD¡C
®gÀ»ªkªº·Qªk
¬JµM¦b¶i¦æ Euler ©Î R-K ¤èªk®É©Ò»Ýªºªì©l±ø¥ó¨S¿ìªkª¾¹D¡A¨º»ò¡A¦p¦ó¶}©l¶i¦æ¡H¼u¹D¸Õ®g´£¨Ñ§Ṳ́@ÓÂI¤l¡A¦b¤õ¬¶®gÀ»®É¡A¥¼¥²¯à¦b¤@¶}©l´N©¯¹BÀ»¤¤¥Ø¼Ð¡A¦ý§ÚÌ¥iÂÇ¥ÑÆ[¹î¼uµÛÂI¨Ó´£¨Ñ¤U¤@µo¦p¦ó×¥¿ªº¸ê°T¡A¥H´£ª@©R¤¤¾÷·|¡C®gáÙÆ[©À³Q¥Î¦b¥H¬J¦³ªºªì©l°ÝÃD¤èªk¨Ó¸Ñ¨MÃä¬ÉȰÝÃD¡C¥H¤U¹Ï¥Ü²M·¡¦a»¡©ú¦¹¤@·Qªk¡G
±q¥XµoÂI¥ª°¼¡A©Ò¦³¯à¥Î¤WªºÃä¬É±ø¥ó¡]è¦n¤]¥i§@¬°ªì©l±ø¥ó¡^³£¨Ï¥Î¤§¥~¡A¤£¨¬ªº³¡¤À´N¥ý¥Î²qªº¡A¦p¦¹´N¥i¥Hµo°Ê "¹Á¸Õ©Ê" ªº¤@¨B¨B±À¶i¨D¸Ñ¡C
³oùئC¥X¤F¤T¦¸ªº¹Á¸Õ¡Aµ²ªGªº½T¤@¦¸¤ñ¤@¦¸§ó±µªñ©ÒnªºÃä¬É±ø¥óÈ¡C¦Ü©ón«ç¼ËÅýµ{¦¡¥i¥H¾Ç·|©Î¦Û°Ê¦a¶V°µ¶V¥¿½T¡A«h¬O®gÀ»ªkªº¥t¤@Ó«ÂI¡A§Ú̦b¤U¤@ӳ椸·|¸Ô²Ó»¡©ú¡C
«Ü©úÅã¦a¡A¸Ñ¨âÂIÃä¬ÉȰÝÃD©Ò¶Oªº¹q¸£¹Bºâ¶q·|¤ñªì©lȰÝÃD¦h±o¦h¡A¦]¬°¨C¤@±ø¦±½u³£¬Û·í©ó¬O¤@¦¸§¹¾ãªº rkdumb ©Î odeint ©I¥s¡C
©ñÃPªkªº·Qªk
¥t¤@¤jÃþªº¤èªk¬O©ñÃPªk¡]relaxation methods¡^¡A¹Ï¥Ü¦p¤U¡G
¸Ô²Óªº¤¶²Ð¥H¤Î»P®gÀ»ªkªº¤ñ¸û¡A½Ð¨£½Ò¥»¡C¹ï©óµLªk½T©w¥Î¨º¤@ºØ¤èªk¤ñ¸û¦nªº°ÝÃD¡A§@ªÌ«ØÄ³¥ý®gÀ»¡B¦A©ñ»´ÃP¡]ÂùÃö»y«ÕÀq¡^¡C
¼Ð·ÇªºÃä¬ÉȰÝÃDªº«¬¦¡
°£¤F¤W±´£¨ì¦³¨Ç°ÝÃD¨ä¥»½è¤W´NÄÝ©ó¬OÃä¬ÉȪº°ÝÃD¥~¡A¥t¦³¨âºØ«nªº·L¤À¤èµ{°ÝÃDÃþ«¬¥i¥H»´©ö¦aÂà¤Æ¦¨¬°ÂùÂIÃä¬ÉȰÝÃD¡A¤Àz¦p¤U¡G
¤@¡B¥»¼xȰÝÃD«¬ªº·L¤À¤èµ{
µ¥¸¹ªº¥k¤âÃ䦳¤@Ó¥¼ª¾ªº°Ñ¼Æ λ¡A°ÝÃD¥iªí¥Ü¦¨
dyi(x)/dx = gi(x,y1,y2,...,yN; λ)
¥u¦³¬Y¨Ç¡]¥»¼x¡^Ȥ~·|¦³¸Ñ
¹ï©ó³o¼Ëªº°ÝÃD¡A§ÚÌ¥i¥H§âλ·í§@¤]¬O«Ý¸Ñªº¥¼ª¾¨ç¼Æ¡A¥u¤£¹L¥¦¬O±`¼Æªº¥»½è¡A´«¥y¸Ü»¡¡A§ÚÌ¥i¥H¦h¥[¤@Ó¨ç¼Æ yN+1(x) = λ ¡A¨Ã¦h¤@Ó±ø¥ó¦¡
dyN+1(x)/dx = 0
·sªº¦¡¤lÅܦ¨
¦@¦³ N+1 ±ø¤@¶¥·L¤À¤èµ{¦¡¤Î N+1 ӫݨD¸Ñ¨ç¼Æ¡C
¦Ü©ó©Ò»Ýnµ¹ªº·s±ø¥ó¡A´N¤ñ¸û½ÆÂø¤@ÂI¡A¤@¯ë¦Ó¨¥¬OµLªk¼g¤U yN+1(x0) ©Î yN+1(xMAX) »P¨ä¥L yi(x0) ©Î yi(xMAX) §Î¦¨¤°»ò¤@±ø¦¡¤lªºÃö«Y¡A¦Ó¬O·í l ¤£º¡¨¬®É¡A¨ä¥LÃä¬É±ø¥ó·|¨S¦³¿ìªkº¡¨¬¡A¦p¦¹´Nµ¹¤F¥²¶·¥t¦æ·j´M l ªº§PÂ_¨Ì¾Ú¡C
¤G¡B¦Û¥ÑÃä¬É±ø¥óªº°ÝÃD
¶È§@¿ïŪÃD§÷¡]¤£¦Ò¡^¡A²Ó¸`½Ð¨£½Ò¤å¡C
¡]¥»³æ¤¸µL°Æµ{¦¡¡^