´X¦ó II

 

¦V¶q¡B®y¼Ð»P°ò©³

´X¦ó¾Ç±q§Îª¬ªº¾Ç°Ý¡A³z¹L¸ÑªR´X¦óªº«Ø¥ß¡A¥H®y¼Ð¡]¦V¶qªº¤À¶q¡^¨Ó´y­zªÅ¶¡¤¤ªºÂI¡B½u¡B­±¡BÅé¡A½á»P¤F³o¨Çª«¥ó¤W¨ç¼Æªº·N¸q¡C

µM¦Ó¡A¤À¶q©Ò§e²{ªº­È¡A·|¦]¬°®y¼Ð¶b¡]°ò©³¦V¶q¡^¨úªkªº±o¤£¦P¦Ó¦³¤£¦P¡C¯à¨ú¨ì¤@­Ó¤ñ±Õ¦nªº°ò©³¦V¶q¨Ó°µ®y¼Ð¶b¡A¹ï°ÝÃD¡B¤èµ{¦¡ªºÂ²¤Æ¬O«Ü¦³À°§Uªº¡CÁ|­Ó¨Ò¤l»¡¡A¾ò¶ê¤èµ{¦¡¦b¨ú¤Fªø¡Bµu¶b§@¬°®y¼Ð¶b¤§«á¡A§Î¦¡´NÅܱo²¤Æ«Ü¦h¡C

¡]¨Ò¦p¡A¾ò¶ê¤èµ{¤è 4( 3x - 4y + 1)2 + 3 ( 4x + 3y -7 )2 = 900 ¡^

 

®y¼ÐÂà°Ê»P°ò©³ÅÜ´«

¦^®a§@·~¡G¤vª¾®y¼ÐÂà°Ê¤F α ¨¤¡A«h·s®y¼Ð¤À¶q (x', y') ­n«ç¼Ë§Q¥Î®y¼Ð¤À¶q (x, y) ¨Óªí¥Ü¡H

 

¥Ñ¥¿¥æ(Âk¤@)®y¼Ð¨tÀò±oªº±Òµo¡G

 

(vx,vy,vz) dot (ux,uy,uz) = vxux+vyuy+vzuz

f(x') = ∫ f(x)δ(x-x') dx

¨ä¤¤ δ(x) = ∞ , if x = 0

= 0, if x ≠ 0

¤S ∫{-ε, ε} δ(x) dx = 1, where ε > 0

¡]¤£­n¥H¬°³o¼Ë¤l¯Â·Q¹³ªº©â¶H¨ç¼Æ¤£¤@©w¬O¦s¦b,¥¦¯uªº¥i¥H¸Ë¤@¯ë¦æ¬°¨}¦nªº¡B¨ã¦³³æ¤@®p­Èªº¨ç¼Æ¡A³vº¥¹Gªñ¦Ó±o¨ì¡C¨Ò¦p¾A·íÂk¤@¤Æ¤Fªº±`ºA¤À§G¨ç¼Æ¡A´N¥i¥H®³¨Ó°µ¡C¡^

f_vec=f(x)=(fx1,fx2,fx3,.....)

g_vec=g(x)=(gx1,gx2,gx3,.....)

f_vec dot g_vec= fx1gx1+fx2gx2+fx3gx3+.....

¦ý¬O²{¦b¦³¤@­Ó°ÝÃD¡A¤Á³Î¨ìµL­­¦h¨S§¹¨S¤F¡A¼Æ­ÈÃz±¼¤£¥i³B²z¡C¡]´Nºâ§A°í«ù¥i¥H·Q¹³¡B¥i¥H²z¸Ñ¡A§O§Ñ¤F¤£¯à¤ñ¤j¤p¡B¤£¯à¥[´î­¼°£¡B¤£¯àºâ¡I¨º´N¨S¤°»ò¥Î¤F¡^

¸É±Ï¤@¤U

­«·s©w¸q f_vec dot g_vec = (­ì¨Óªº¼gªk) / N

¥t¥~¦³¤@¥ó¨Æ±¡¡A¤º¿nªºµ²ªG¨ä³æ¦ì

x ÄÝ©ó {a,b}

¦P­¼¦P°£¥H b - a ¡A¤W¦¡ = (­ì¨Óªº¼gªk) [(b - a)/(b - a)]/N = [1/(b - a)] (­ì¨Óªº¼gªk ) (b - a)/N

³Ì«á (b-a)/N ³o­Ó³¡¥÷ §Y¬° Δx¡A«h

¤º¿n = (b - a)-1 Σ f(x)g(x) Δx

·í N ÁͦVµL­­¤j

¤º¿n = (b - a)-1 ∫ f(x)g(x) dx

§Ú­Ì¥i¥H©w¸q²Å¸¹¡G: v dot u = < v | u >, ¨ä¤¤ v = | v >, u = | u >

¦P®É f dot g = < f | g >

¨S¾Ç¿n¤À¡A¦b°ªµ¥¼Æ¾Ç¤¤³s¤º¿n(§ë¼v)³£¨S¿ìªk°µ¡C

©Ò¥H¡A¦s¦b¨ç¼ÆªÅ¶¡¡A¨Ï±o¥ô·N ¨ç¼Æ f = Σ{all x'} fx' ex'

¨ä¤¤ ex' =

¥B <ex' | ex"> = δx'x" " if x' = x" " , δx'x" = 1; if x'≠ x" ", δx'x"=0

³oùتº ex' ´N¬O δ(x-x'),

ª`·N¡A°ò©³¤]¬O¥i¥HÅÜ´«ªº¡A¦ý(¨ç¼Æ)¤º¿nªº³W«h¤´Ä~Äò¥i¥Î

 

¸É¥R¸ÜÃD¡G¸s½×¡]¤°»ò¬O¸s¡H¡^

¯à¶i¦æ¤G¤¸¹Bºâªº¾Þ§@¡A¦¬¶°¦¨¬°¤@­Ó¶°¦X¡A¨ä¤¤¨C¤@­Ó¤¸¯À

«Ê³¬©Ê¡]for all A, B ∈ G, AB ∈ G¡^

³æ¦ì¤¸¯À I ¦s¦b¡A¨Ï±o ¹ï©ó©Ò¦³¡] A, A I = I A = A

¤Ï¤¸¯À¦s¦b¡]∀A ∈G, ∃A-1 ∋A-1 A = A A-1 = I

 

 

¬°¤°»ò¼Æ¾Ç®a­n¦Û¶Ù©w¥X³o¼ËªºªF¦è

 

½d¨Ò¡G±ÛÂà

¤¸¯À¡GÂà°Ê¬Y¨¤«×

«Ê³¬©Ê¡GÂà¡B¦AÂà¡Aµ¥¦P©óÂà¤@¦¸

³æ¦ì¤¸¯À¦s¦b¡G¹s«×¤£Âà¤]¬O¤@ºØÂà

¤Ï¤¸¯À¦s¦b¡G¤ÏÂà

¦]¦¹¡A©Ò¦³ªºÂà°Êºc¦¨¤@­Ó¸s

 

 

¨ç¼ÆªÅ¶¡

°ò©³¨ç¼Æ»P¨ä¥¿¥æ©Ê¡B§¹³Æ©Ê

¨ç¼Æ¯à¤£¯à¹³¦V¶q¨º¼Ë¥H°ò©³¡]°ò©³¨ç¼Æ¡^¨Ó®i¶}¡H

¦V¶q«ç¼Ë©w¥¿¥æ¡H¡]µª®×¡G¤º¿n¬°¹s¡^

¤º¿nªº©w¸q¡G

http://en.wikipedia.org/wiki/Inner_product_space

http://mathworld.wolfram.com/InnerProduct.html

http://en.wikipedia.org/wiki/Dot_product

 

¨â­Ó¨ç¼Æ«ç¼Ë©w¤º¿n¡H¡]¤èªk¤§¤@¡G¬Û­¼¨Ã¿n¤À¡^

 

¨ç¼ÆªÅ¶¡ùتº¤º¿n

(1) ©w¸q»P½d¨Ò

¨£¤º¿nªº¤@¯ë©Ê©w¸q

(2) §ë¼v»P¤À¶q

§ë¼v¥»¨­´N¬O¤@­Ó«D±`´X¦óªº¦Wµü

 

¥H¤T¨¤¨ç¼Æ§@¬°°ò©³

´I§Q¸­ (Fourier) ¯Å¼Æ

¥ý¬Ý¤U¦Cªº©Ê½è¡G

¡]¥H¤W³o¨Ç¿n¤À¦pªG¤£·|°µ¡A¤]¥i¥H¼g­Óµ{¦¡¨Ó­pºâÅçÃÒ¡C¡^

 

¹ï©ó¥ô¦ó¶g´Á©Ê¨ç¼Æ¡A³£¥i¥H¥Î¨Ç¥¿©¶»P¾l©¶¨ç¼Æ®i¶}¡A¦p¤U¡G

 

°ò¥»§Þ¥© sin(x)sin(y) «ç»ò¿n¤À

¿n¤Æ©M®t

¦pªG§Ñ°O«ç»òÃÒ©ú : e = cosθ + i sinθ

 

¦pªG©w¸q°ì¬Oªø«×¦Ó¤£¬O¨¤«×

http://mathworld.wolfram.com/FourierSeries.html

 

±q¤W­±ªº§ï¼g¡Af(x) »P An ¤§¶¡ªº 1-1 ¹ïÀ³§ó¥[©úÅã¤F¡C

 

f(x) ¬O -L ~ L ªº¶g´Á¡A¦pªG L → ∞ «h f(x) »P An ¤§¶¡ªºÃö«Y¤]§¹¥þ¾A¥Î

©w¸q 2 nπ/ L = k ¡A«h L ÁͪñµL­­¤j®É¡Ak Åܦ¨³sÄòªº©Ò¥H An = A(k)¡A¯Á©Ê¼g¦¨ F(k)¡C

¡]¨º¡A­ì¥»¤@­Ó¶g´Á¤§¥~ÁÙ¦³¤£Â_­«ÂЪº¨ä¥L¶g´Á¡A«ç¿ì¡H¥J²Ó·Q·Q¡A§Ú­Ì¤w¸g©w¤F f(x) ±q - ∞ ~ ∞¡A»¡¥¦·|¦b ∞ ~ 2 ∞ ¦A­«ÂФ@¦¸¡A¤w»P§Ú­ÌµLÃö¡A¶Å¦h¤£·T¡C¡^

´I§Q¸­Âà´«

«D¶g´Á©Ê¨ç¼Æ¡A¦³´I§Q¸­Âà´« f(x) -> F(k) ¡C

¦p¦ó¬Ý¥X´I§Q¸­Âà´«¬O¤@ºØ°ò©³®i¶}¡H¿n¤À´N¬Û·í©ó¥[Á`¡C¥H eikx §@¬°°ò©³®i¶}­ì¨ç¼Æ¡C

 

 

±²¿n (convolution)

http://mathworld.wolfram.com/Convolution.html

http://mathworld.wolfram.com/ConvolutionTheorem.html

 

±²¿n©w²zªºÃÒ©ú¡@¡]·Ó©w¸q¥N§Y¥i¡^

 

 

¥H²y¿Ó¨ç¼Æ§@¬°°ò©³

­ì¤lªº¶q¤l¤O¾Ç°ÝÃD ( ¯à¶q¥»¼x­È¬Û²§ªÌ¡Aªi¨ç¼Æ¥²¥¿¥æ )

 

 

¶®g»P´¹Åéµ²ºc

­ì¤lªº°²»¡¡]­ì¤l½×ªº´_¿³¡^

­ì¤l½×ªº´_¿³

¤ÏÀ³ª«»P¥Í¦¨ª«ªº¤ñ¨Ò

®ðÅé°Ê¤O½×¹w´ú®ðÅé¤èµ{¦¡

¸ÑÄÀ¥¬®Ô¹B°Ê¾É¥X¥XÂX´²«Y¼Æ

 

 

¦³§Çªº±Æ¦C»P´¹Å骺¤ÑµM¥~§Î

¦³¤H¥Î­ì¤lªº¼Ò«¬·Q¹³§Î¦¨©T©w¯S©w´¹­±ªº²z¥Ñ

 

 

¦ò®Ô»¨´´º¸ (¥­¦æ¥ú) ¶®g

 

¤°»ò¬O³Å¤ó¥ú¾Ç¡H

 

§Q¥Î¶®g¨Ó¤F¸Ñ´¹Åéµ²ºc

¦^·Q¡]³æ¡BÂù¡^¯UÁ_¶®gªº¤Ï°f©Êµ²ªG

±`¼Æ¨ç¼Æ

δ ¨ç¼Æ

±`ºA¤À§G¡]°ª´µ¡^¨ç¼Æ

¶g´Á©Ê δ ¨ç¼Æ

 

¹êÅ窺 X-ray ´¹Å鶮g/±ø¯¾½d¨Ò

³æ´¹ (´³ÂI)

¯»¥½ (±ø¯¾)

 

¶®g¹êÅ窺´³ÂI»P´I§Q¸­Âà´«

¸Ô²Ó»¡©ú¡]µ²ºc¦]¤l¡^

 

X-®g½u¶®g»P­ì¤lªº¶g´Á©Ê±Æ¦C

»P¤@­Ó´²®g¤¤¤ß¥æ¤¬§@¥Îªºµ²ªG¡G

25 ­Ó­ì¤l®É (2D)

µ¥¤ñ¯Å¼Æ¤½¦¡¡G¡]1 ´î¤½®t¡^¤À¤§¡]­º¶µ´î¥½¶µ¡^¡A¦p¤U

 

Diffraction Patterns of Crystals

NaCl

 

Ba3W2O9

 

 

­ËªÅ¶¡

¦³´¹­M¶g´Á¦V¶q a1, a2, a3¡A·Q«Øºc¥X ai . bj = δij ªº


 

ÂùÁ³±Û

http://163.13.111.54/bio_rev/x-ray_diffraction.htm

 

³J¥Õ½è

¯Ø®q¯À (Insulin)

²Ä¤@­Ó³Q©w§Ç¥X¨Óªº³J¥Õ½è¡C¦ý»Ý­nµ²´¹¡A¤~¯à¥Î X-¥ú¶®g©wµ²ºc¡C¡]²Ä¤@­Ó³Q©w¥X 3D µ²ºcªº³J¥Õ½è«h¬O¦Ù¬õ¯À myoglobin¡C¡^

§Î¦¨´¹Åé®É­Ôªº¼Ë¤l¡]¤Z±o¥Ë¤O¡^

¤W¹Ï¤§©ñ¤j¹Ï

 

¸­ºñÅ骺¥ú¦X§@¥Î¨t²Î

³o¬O²Ä¤@­Ó³Qªø´¹¥X¨Óªº½¤³J¥Õ½è¡]¥¦¬O´O¦b¯×½èÂù¼h½¤¤W­±¡^¡C¥¦¬O¤T­Ó¬Û¦Pªº³æ¤¸ºc¦¨ªº«ó¥­¥¨¤j¤À¤l½Æ¦XÅé¡C¨C­Ó³æ¤¸³£¦³¤Q´X­Ó³J¥Õ½è¡A¦@¦P®e¯Ç¸­ºñ¯À¤ÎÃþ­JÅÚ½³¯À¡C ¡@(«ç»ò·|¨º»ò­è¦nªº§Îª¬¤Î¤j¤p¡H)

¥ú¦X§@¥Îªº¤¤¤ß¦b¤@­Ó«Ü¹³¦å¬õ¯À±a®ñ¤¤¤ßªº³¡¤À¡A§t¦³ heme ¤À¤l

 

Protien Database (PDB)

 

§Î§Î¦â¦âªº³J¥Õ½è (1)¡B(2)

 

AlphaFold »P³J¥Õ½è§éÅ|°ÝÃD

¤´¦³²³¦hªº ³J¥Õ½è¬O¨S¦³¿ìªkªø¦¨´¹Å骺¡C¹q¸£¼ÒÀÀ¦¨¬°­«­n¤u¨ã¡Cªñ¦~§ó¥[¤W²`«×¾Ç²ß¤H¤u´¼¼z¡A¹ï¤vª¾Ói°ò»Ä¶¶§Ç¡A¹w´ú³J¥Õ½è¥ßÅéµ²ºc¡C

 

´¹Åé»P´X¦ó

¡]¥»¸`»Pµ²´¹¾Ç¦³Ãöªº¹Ï¤ù¡A¤Þ¥Î¦Û Marder ©ÒµÛªº Comdensed Matter Physics ±Ð¬ì®Ñ¡^

´¹Å鬰¦ó·|§Î¦¨

¶g´Á©Ê¬O´y­z´¹Å骺§Q¾¹

§Q¥Î¹ïºÙ©Ê¨Ó¤ÀÃþ´¹Åé

¹ïºÙ¾Þ§@»P¹ïºÙ¸s

¤C¤j´¹¨t»P 14 Ãþ´¹®æ

32 ÂI¸s »P 230 ªÅ¶¡¸s

http://newton.ex.ac.uk/research/qsystems/people/goss/symmetry/Stereographs.html

http://newton.ex.ac.uk/research/qsystems/people/goss/symmetry/Solids.html

 

¥ßÅé¹ï¹Ï ( Setreo-pair Graph )

¦p¦ó¬Ý¡Hªñµøªk¡]¥æ¤e¡^¡]°«Âû²´¡^

¨Ï¥Î°«Âû²´¡B§â¨â­Ó¹Ï¬Ý¦¨«ê¦n¤T­Ó¡A¤p¤ß½Õ¾ãµJ¶Z§â¤¤¶¡¨º­Ó¬Ý²M·¡¡]¦ý¦P®É¦P¾l¥ú¤´ºû«ù¬O¬Ý¨ì¤T­Ó¹Ïªº±¡ªp¡A¤@¶}©l­Y¤£²ßºD¡A¥i¥Î¤@¤äµ§ªº»²§U¨ÓÂê©wµJ¶Z¡^¡C

ªñµøªk¡B¥æ¤eµøªk¡G¬Ý¥ßÅé¹ï¹Ï®É¡AÂù²´µø½u¥æ·|ÂI¦b¹Ï§Îªº«e­±¡F
»·µøªk¡B¥­¦æµøªk¡G¬Ý¥ßÅé¹ï¹Ï®É¡AÂù²´µø½u¥æ·|ÂI¦b¹Ï§Îªº«á­±¡C

¥t¤@±i½d¨Ò¡]ªñµøªk¡^

¦A¤@±i½d¨Ò¡A¦³»²§UÂIªº¡]ªñµøªk¡^

 

¥Î¥ßÅé¹ï¨Ó¬Ý´XºØ±`¨£ªº´¹Åéµ²ºc

²³æ¥ß¤è

Åé¤ß

­±¤ß³Ì±K°ï¿n

¤»¨¤

¤»¨¤³Ì±K°ï¿n

Æp¥Û

´â¤Æ¶u

°{¾NÄq

wurzite

http://cst-www.nrl.navy.mil/lattice/struk.jmol/b3.html

 

 

Crystallographic Restriction Theorem

¤­­«¹ïºÙ©Ê¤£¦s¦bªºÃÒ©ú

´«¥y¸Ü»¡¡A¬O­nÃÒ©ú¡A2p/n ªº¨¤«×ùØ¡A¥u¦³ n=2, 3, 4, 6 ¬O¥i¯àªº¹ïºÙ¾Þ§@Âà°Ê¡C

ÃÒ©úªºµ¦²¤¡G¥Ñ©óÂà°Ê¬O«Oªøªº¡]§Yªø«×·|¬O¤£Åܪº¡^¡A¦]¦¹§Ú­Ì·Qª¾¹D¬YºØ¨¤«×ªºÂà°Ê¬O¤£¬O³Q¤¹³\ªº¹ïºÙ¾Þ§@¡A¥u­n¬Ý·|¤£·|³y¦¨³Ì¾Fªñªº®æ¤lÂIªº¶ZÂ÷¶i¤@¨BÁY¤p§Y¥i¡]­«¦X¬O OK ªº¡^¡C

­º¥ý¡A¤@­Ó­È±oª¾¹Dªº¨Æ¹ê¬O¡Aº¡¨¬¶g´Á©Ê¹ïºÙªº¥R¤À¥²­n±ø¥ó¬O¥¦ºc¦¨ Bravais Lattices¡A¤]´N¬O R = ma+ nb ¡A©Ò¦³¾ã¼Æ m, n ©Òºc¦¨ªº R ªº¶°¦X¡]¤Gºûªº±¡ªp¡^¡C(Bravais Lattice : A collection of points in which the neighborhood of each point is the same as the neighborhood of every other point under some translation.)

¦b¤£¥¢¤@¯ë©Êªº±¡ªp¤U¡A§Ú­Ì§ä¥X¨â­Ó³Ì¾Fªñªº®æ¤lÂI¡A±N³s±µ¸Ó¨âÂIªº¦V¶q¥s a¡A ¥H¥ªÃ䨺ÂI¬°¤¤¤ß¡A±ÛÂਤ«× theta ¡A«h­ì¥k¤âÃ䪺ÂI²¾¨«¨Ã­«¦X©ó¥t¤@­ÓÂI¡]­Y¤£­«¦X«h³Ð³y¥X¤@­Ó·sªºÂI¡A«h¦¹±ÛÂà´N¤£¥i¯à¬O¤@­Ó¹ïºÙ¾Þ§@¡^¡C²{¦b¡A§Ú­Ì¦b·sÂI»PÂÂÂI¤§¶¡©Ô¤@­Ó¦V¶q¡A³o­Ó¦V¶q¤]·|¬O¤@­Ó¥­²¾ªº¹ïµy©Ê¾Þ§@¡A§Ú­Ì¥ý¨Ó¬Ý¬Ý¥¦ªºªø«×¡A¦pªGªø«×¤ñ | a | ÁÙ­nµu¡A«h¤©¬Þ¡A¦]¬° | a | ¬O³Ìªñ¨âÂIªº³s½u¡C·sªº³o­Ó¦V¶q¬O (| a | cos(theta) , | a | sin(theta) ) - (| a |, 0) = ( | a | (1-cos(theta)), | a | cos(theta) )

ÃÒ©ú¤­­«±ÛÂà¹ïºÙ¶bµLªk¦s¦b©ó¶g´Á©Ê¹ïºÙ¾Þ§@

¦b©Ò¦³ªº®æ¤lÂI¤¤§ä¥X¨â­Ó³Ì±µªñªº¡A¦b¤£¥¢¤@¯ë©Êªº±¡ªp¤U¡A¤@¥ª¤@¥k¡A©Ô¤@±ø¦V¶q¡A³o·|¬O³Ìµu¥i¯àªº¶g´Á¦V¶q¡C¦A¨Ó¡A¦U¦Û°w¹ï¨â­ÓÂI§@ 2π/n ªº¥¿­t¤è¦VÂà°Ê¡A¥ª¤âÃ䪺ÂIÂà 2π/5¡A ¥k¤âÃ䪺ÂIÂà -2π/5¡A¦p¦¹»P­ì¥ýªº¨âÂI³s½u§Î¦¨¤@­Ó±è§Î¡A³o­Ó±è§Îªº±×Ãäªøµ¥©ó©³³¡ªø¡]¦]¬°±×Ã䪺ÂI¬OÂà°Ê±o¨ìªº¡^¡A¦Ü©ó¥­¦æ©ó©³Ã䨺­Ó·s³s½u¡A¥¦ªºªø«×¬O¨â­Ó | a | cos(2π/n) ªº©M¡A³o­Óªø«×­n¬O¤ñ | a | µu¡A´N¬O¤©¬Þ¤F¡C²{¦b§Ú­Ìª`·N cos(x) ¦b²Ä¤@¶H­­¬O¤@­Ó»¼´î¨ç¼Æ¡A¨¤«×±q 0 ¨ì 90 «×¨ä¨ç¼Æ­È±q 1 »¼´î¨ì 0¡C¥¦¦b 90 «×®É¤~·|¨Ï±è§Îªº³»Ãäªøµ¥©ó©³Ãäªø¡A¦¹®É¬° 2π/n ªº n=4¡F¦Ó¦b 60 «×®É¨âÂI­«¦X¡A±è§Î¦¨¬°¥¿¤T¨¤§Î¡A¦¹®É¬° 2π/n ¤§ n=6¡C¹ï©ó n=5 ¦Ó¨¥¡A³»Ã䪺ªø«×¤£¬°¹s¥B¤S¤ñ©³Ãäµu¡A¬G¥Ù¬Þ¡C

¹ï©ó n ¤j©ó 6 ªÌ¡A·sÂà¥XªºÂI¹ï­ì¦ì¸mÂI©Ò©Ô¥Xªº¦V¶qªø«×¤ñ | a | ¤p¡A¦p¦¹¤]¬O¥Ù¬Þ¡C

§Ú­ÌÃÒ©ú¤F n = 5 »P n > 6 ªÌ³£¤£¥i¯à¡C

¦Ü©ó n = 2, 3, 4, 6 ¬O§_´N¤@©w¥i¯à¡A³o´N¤ñ¸û²³æ¡A¹ê»Ú§@¥X¤@­Ó½d¨Ò§Y¥i¡C

ºî¦X¥H¤W¡A±oÃÒ¡C

 

 

 

 

 

·Ç´¹ ( Quasi-crystal ) ¡]¥H¤U¹Ï¤ù¨ú¦Û Marder, Condensed Matter Physics ±Ð¬ì®Ñ¡^

¥O¤HÅ岧¤­­«¹ïºÙµ²´¹

 

³o¬O«ç»ò¦^¨Æ¡H

 

 

³W«h©Ê «o µL¶g´Á ¡H

¦p¦ó¥Î³W«hªº¤èªk³y¥X«D¶g´Á±Æ¦C ? ¡]­¿¼Æ©ñ¤j¤£¹ïºÙ³æ¤¸¡A¦b¤ÏÂà¨ä¤¤ªº³æ¤¸­P¨Ï¾ãÅ餣¹ïºÙ¡^ ¡]¨Ò¦p¤T­¿¤@ÅÜ¡G¡Ï¡@¡Ï¡Ï¡Ä¡@¡Ï¡Ï¡Ä¡Ï¡Ï¡Ä¡Ä¡Ä¡Ï¡@¡D¡D¡D¡^

 

¤@ºû·Ç¶g´Á©Ê¨t²Îªº¨Ò¤l

¥ý¬Ý¤@­Ó¤@ºûªº¨Ò¤l¡AFibonacci chain ( °Ñ¦Ò 1, 2 )¡A¦³¤@ºØ¼g¤U¸Ó¼Æ¦Cªº¤èªk¬O¡G

±q¤@±ø¼Æ½u¤W¨Ó¬Ý¡A³o­Ó¼Æ¦C¦³©Î¤j¤p¨âºØ¤£¦Pªº¶¡¹j¡A¤£¬O 1 ´N¬O t

¨ä¤¤

¬O«ê¦n¦³¦Wªº "¶Àª÷¤ñ¨Ò"¡C

¦¹¼Æ¦C¦³¤@­Ó­«­nªº¯S©Ê¥s deflation rule¡A·N«ü¦pªG§Ú­Ì¼g¤U¦¹¼Æ¦C¥ô¦ó¬Û¾F¨â­Ó¼Æ¦r¤§¶¡ªº®t¡A¨Ã§â 1 ´«¦¨ t ¡B§â t ´«¦¨¨â­Ó¼Æªº¤p¼Æ¦C t, 1 ¡A«h»P­ì¼Æ¦C¤@¼Ë¡C

¨Ò¦p¡A¦³¤@­Ó§Ç¦C

±µµÛ¶i¦æ

´N·|±o¦^¨ì

¦b¦¹¤¶²Ð¦¹¤@¼Æ¦Cªº­ì¦]¬O­n§ä¤@­ÓÆZ¦³³W«ß©Êªº¼Æ¦C¡AµM¦Ó¥¦«o¤£¨ã¦³¶g´Á©Ê¡C¨Æ¹ê¤W¡A³o­Ó¼Æ¦C³QºÙ¬°¨ã¦³·Ç¶g´Á¡A·N¨ýµÛ¥¦¦b°ªºû«×¬O¦³¶g´Á©Êªº¡A¥u¬O³Q§ë¼v¦a§Cºû«×¡C

¥t¤@ºØ«Øºcªº¤èªk¡G

 

³o­Ó¦¡¤l¨ì©³¬O¤°»ò¡H¤ÀªRÆ[ÂI¡G

­ì¦¡ xn = n + (τ - 1) int (n/τ) ¡A¤vª¾ τ - 1 = 1/τ

§â n ¬Ý§@¾î¶b¡Ax ¬Ý§@Áa¶b¡A­Y¥u¬Ý xn = n ¡A±×²v 45 «×¡A¦U xn+1 - xn µ¥¶¡¹j¡C §Ú­ÌÃö¤ß±×Ãä¤W­È°ìÂIªº¶¡¹j¡C

±×²v¦pªG¬O¦³²z¼Æ¡A«h¥²¦s¦b xn / n = p / q ¡A§Y¶g´Áµ²ºc¡C¦pªG±×²v¬OµL²z¼Æ¡A´N¤£·|¦³¶g´Á©Ê¡C

²{¦b¡A·Q·Q¤U¦¡ ¡G

xn - n = (τ - 1) int (n/τ)

¡]°Ñ¦Ò¤U¹Ï¡^©ñ¦b¾î¶b¨Ó¬Ý¡Axnªº­È¡A¦b´î¥h n «áªº¡A§@ª½¨¤¤T¨¤§Îªº©³¡A¦Ó n ÂI¹ïÀ³¨ìªº ( 1/τ) n ªº¾ã¼ÆÂI¡Aºc¦¨ªº¤T¨¤§Î±×Ã䦳¦@¦Pªº±×²v¡C

¦b±×²v¬O 1/τªº½u¤W¡A§ä««ª½¼e¬O 1 ªº°Ï¶¡±a¡A«ê·|¦³¤@­Ó¾ã¼ÆÂI¡A³o­ÓÂIªº°ª«×¬O int ( ( 1/τ) n ) = int ( n /τ) ¡A¥H³o­Ó°ª§@¾l©¶¡A°Ý¤@±×²v¬O 1/τªº¨¤¡A¨ä¥¿©¶ªø¬O¦h¤Ö¡A·íµM´N¥u¬O²³æ¦a§âªø«×­¼¤W±×²v ¨Ó±o·s°ª«×¦Ó¤v¡A¤]´N¬O int (n /τ) times ( 1/τ)¡A§Y ( 1/τ) int ( 1/τ)¡A ¤]´N¬O¦¡¤l¤¤ªº (τ - 1) int (n/τ) ¡A¦]¬° 1/τ «ê¬° (τ - 1) ¡C

¦]¦¹Ãö«Y¦¡ xn - n = (τ - 1) int (n/τ) ªº½T­«²{¤F(¤U­±) 2D ¹Ï¤¤ªº¾î¶b¤Wªº ¼Ð©w xn

 

 

±q 2D ¨Ó¬Ý

±q¥t¤@¨¤«×¬Ý


¡]¤W¹Ï¨Ó·½¡Ghttp://www.jcrystal.com/steffenweber/qc.html¡^

 

§â¤@ºûµ²ºc³o¼Ë°µªº¦n³B¦b©ó¡A¤è«K°ò©ó¨ä¤Gºû¬O¶g´Á©Êªº¯S©Ê¡A§@ Fourier Âà´« ¡]·|¥Î¨ì±²¿n²z½×¡^

 

¼ï¬¥´µ¾Q¿j (Penrose Tiling)

¦³¦Wªº Penrose Tiling¡A¬O¤@­Ó¥H«D¶g´Áªº¤è¦¡¥Î²¡¿j±N¥­­±¾Qº¡ªº¤èªk¡C

¼Æ¾Ç®aªº¹xµ£¤ßºA¡H³Ì¦­µoªí©ó " ¶éÃÀÂø»x"¡@Gardener (1977)

¡]µù¡G¶Àª÷¤ñ¨Ò long / short = (long + short) / long ¡^

 

 

«D©P´Á ?

º¡¨¬ deflation rule ¡A¦b­ì¨Óªº¨âºØ tiles ¤W¨è¥X¤À³Î½u¤Î°O¸¹¡Aª`·N¦Ç¦â­±¿n»P­ì¨Óªº¥Ë¤ù­±¿n¤@¼Ë¡C

¤W¹Ï (A) ªº»P (B) ¦Uµe¤W¤F¤­±ø°Ñ¦Ò½u¡A¨¤«×¦U®t 2π/ 5¡C¾Q§¹¾ã¤ù«á¡A¥i¨£¼e±a»P¯¶±a¨âºØªø«×«÷¦¨ªº§Ç¦C¡A¤­­Ó¤è¦V³£¤@¼Ë¦³¡C

 

¯u¹ê­ì¤l±Æ¦Cªº±¡ªp

¦b¹êÅç¤W¦³Æ[¹î¨ìªº¡A¦³½ÆÂøµ²ºcªº¦Xª÷¨ã¦³§ÎÅܪº¤G¤Q­±Åé¡]³Ì±K°ï¿n¦p­±¤ß¤Î¤»¨¤³Ì±K°ï¿nª¿±Æ¦C¤èªk¡A¨C­Ó­ì¤l³£³Q¤Q¤G­Ó­ì¤l¥]³ò¡A­Y§â³o¤Q¤G­Ó­ì¤lªº¤¤¤ß¥Îª½½u¤¬³s¡A«h§Î¦¨¤@­Ó²z·Q¤G¤Q­±Åé¡^¡C¤@¯ë»{¬°¡A¬O¦UºØÅܧΪº¤G¤Q­±Åé¹ê²{¤F¦bªÅ¶¡¤¤³sÄò±Æ¦C¶ñº¡ªº³Ì§C¯à¶qª¬ºA¡C¨ä¤¤¦³¤T«×ªÅ¶¡ªº·Ç´¹¡A¤]¦³¤G«×ªº¡C¤U¹Ï´N¬O¾T»É¹W¦Xª÷§Î¦¨¤Gºû·Ç´¹ªº¼hª¬±Æ¦C¡C¥H±½´y¬ï³z¦¡Åã·LÃè (STM) °O¿ý¨ìªºªí­ì¤l¼v¹³¡C

¨ã¦³ 12 ­Ó³»ÂIªº 20 ­±Åé (icosahedron)

¨ã¦³ 20 ­Ó³»ÂIªº¥¿ 12 ­±Åé (dodecahedron)

http://zh.wikipedia.org/zh-tw/%E6%AD%A3%E4%BA%8C%E5%8D%81%E9%9D%A2%E9%AB%94

 

 

§¹¬üªº¤­¨¤¡]¤­­«¶b¡^¦h­±Åé¬O«ç»ò°ï¥X¨Óªº

Deteministic packing can generate none periodic structure, one example is Penrose tiling.

¹Ï : big alloy quasicrystal photo (¤@®æ 1 mm)

 

Cluster ¼Ò«¬¡@¦³¦n¬Ý©öÀ´ªº YouTube ¼v¤ù(quasicrystal zen magnet) ¦ý¤Å»~¸Ñ¬°¥²¶·¥H hierachical ¤è¦¡§Î¦¨ ¨º¼Ë³æ¤¸¹Î¶¡¤Õ»Ø±N·|¹L¤j

ÃöÁäÆ[©À¦b©ó¡G"§½³¡¹ïºÙ©Ê¤w¨¬°÷«OÃÒ´¹Åé ¦b¤­­Ó¤è¦V¤Wªº¦¨ªø"

¹Ï : crystal mophology and miller index («Ý¿ï)

 

¥i¯àªº´¹­±ºc§Î¡]¦¨ªø¶V§Öªº¨º­Ó´¹­±, ÅS¥X¶V¤Ö¡^

 

Rhombic tricontadehron

http://mathworld.wolfram.com/RhombicTriacontahedron.html

 

¼h¼h®MÅ|

 

 

Âç²M¤½®×©Ò¾Ç¨ìªº¸gÅç

ÅK«hÁÙ¬O¥i¥H¥´¯}ªº¡C

­ËªÅ¶¡¹Ï (X-ray ¶®g) »P¹êªÅ¶¡¹Ï¹³ (¹q¤lÅã·LÃè) ¤¬¸É¤£¨¬¡C

 

 

 

ºô¸ô¸ê·½

QUASIG

http://www.condellpark.com/kd/quasig.htm

Penrose Tilings and Wang Tilings

http://www.valdostamuseum.com/hamsmith/pwtile.html

¥t¤@ºØ¬üÄRªº tiling , Hyperbolic Planar Tesselation

http://www.plunk.org/~hatch/HyperbolicTesselations/

2011¦~¿Õ¨©º¸¤Æ¾Ç¼ú¡X·Ç´¹ªºµo²{

http://web1.nsc.gov.tw/fp.aspx?ctNode=1104&xItem=14728&mp=1

Youtube ¤Wªºª±¨ã¥Ü½d

http://www.youtube.com/watch?v=J6iAvYgLAC4

³nÅé

http://www.jcrystal.com/steffenweber/qc.html