°¨§J´µ«Âº¸¤èµ{¦¡¡Bª«½èªººÏ©Ê¡B¹qºÏªi

 

°¨§J´µ«Âº¸¤èµ{¦¡

 

ºÏ³õªº°ª´µ©w«ß

ºÏ³æ·¥¡]¥Ø«e©Òª¾¡^¨Ã¤£¦s¦b

ΦB = ∫CS B · dA = 0

¤ñ¸û¹q³õªº°ª´µ©w«ß

ΦE = ∫CS E · dA = qenc / ε0

ºÏ§é¦¨´X¬q¡A¨C¤@¬q³£Åܦ¨ºÏÅK¡A¦U¦Û¦³ N¡BS ·¥¡A¦p¹Ï 32-2

°Q½×ÃD¡G©Ò¥H¡A¥´Â_ªººÏÅK¡A¬ù¥½¦Û¤w¥i¥H§l¦b¤@°_«O«ù­ì¨Óªº§Îª¬¡A¹ï¶Ü¡H

 

·PÀ³²£¥ÍªººÏ³õ (Induced Magnetic Fields)

ªk©Ô²Ä·PÀ³©w«ß¬O "ºÏÅܥ͹q"

CL E · ds = - dΦB / dt

¦Ó°¨§J´µ«Âº¸·PÀ³©w«ß«h¬O "¹qÅܥͺÏ"

CL B· ds = μ0ε0E / dt

¹êÅçÃÒ©úªº½T¦p¦¹¡C

³oºØ·PÀ³ªº¤@­Ó¯S®í¨Ò¤l¬O¥¿¦b¥R¹q¤¤ªº¹q®e¾¹

 

¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß

¦^¾Ð¦w°ö©w«ß

CL B · ds = μ0 ienc

¦Ó«e¤@¤p¸`ªº°¨§J´µ«Âº¸·PÀ³©w«ßµ¥¸¹¥ªÃä¡A¤]¥X²{¦P¼ËªººÏ³õÀô¸ô¿n¤À¡A§Ú­Ì¥i¥H¦X¨Ö³o¨â­Ó¤èµ{¦¡¡G

CL B · ds = μ0ε0E / dt + μ0 ienc

ºÙ¬° ¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß

 

¦ì²¾¹q¬y

³o¬O°¨§J´µ«Âº¸³Ì«á²Î¦X¥|±ø¤@²Õ¤èµ{¦¡ªº³Ì«á¤@¶ô«÷¹Ï¡]¹F¦¨¤½¦¡ªº¬üÄR»P§¹¾ã¡^¡C§Ú­Ì¬Ý¤W­±ªº ¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß¤§µ¥¸¹¥kÃ䪺¨â¶µ¡A¦Ó³]·Q¤@°²·Q¹q¬y¡A¦ì²¾¹q¬y

id = - ε0E / dt

«h

CL B · ds = μ0 id,enc + μ0 ienc

¦p¦¹¡A´N³£¥i¥Î¹q¬y·½¨Ó²z¸ÑºÏÀô¸ô¡C

¦ì²¾¹q¬yªºª«²z·N¸q

Åܰʤ¤ªº¹q³õ¡A¥iµø¬°¹q®e¤Wªº¥R¹q¹q²ü¥¿¦bÅܤƼƶq¡]¦]¦¹¹q¤O½uªº¼Æ¥Ø¤]¤~·|Åܤơ^¡A¦Ó¯à³y¦¨¹q®e¥R¹qªº¡A¥¿¬O¹q¬y¡C¦¹¹q¬y¤£¬O¯u¦³¹q²ü¶Ç¿é¹L¥h¡A¦Ó¬O²Ö¿n¦b¹q®e¾¹¤Wªº¹q²ü¤ÀÂ÷¡A¦]¦¹¤~¥s¹q¦ì²¾¡C¬G³y¦¨Ãþ¦ü¹q®e¾¹¥R¹qªº¥R¹q®ÄÀ³ªº°²·Q¹q¬y¡A¥s¦ì²¾¹q¬y¡C

 

¨D·PÀ³ºÏ³õ

¹ï¥b®| R¡A¥¿¦b¥R¹qªº¥­ªO¹q®e¡A§Ú­Ì¥i¥Î id ¨Ó¨D·PÀ³ºÏ³õªº¤j¤p¡A¹q®e¤§¤º¶Z¤¤¤ß¬° r ªºÂI¨äºÏ³õ¤j¤p¬°¡A

B = (μ0 id / 2πR2) r

¦b¹q®e¾¹¥~«h¬O

B = μ0 id / 2πr

 

°¨§J´µ«Âº¸¤èµ{¦¡¡]²Õ¡^

¦b¨S¦³¤¶¹q½è©ÎºÏ©Ê½è¦s¦bªº±¡ªp¤U¡A¥|±ø¤èµ{¦¡¾ã²z¦p ªí 32-1 ¡G

°ª´µ©w«ß
ºÏ¾Ç°ª´µ©w«ß
ªk©Ô²Ä·PÀ³©w«ß
¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß

 

°¨§J´µ«Âº¸¤èµ{¦¡¡]²Õ¡^¤]¦³·L¤À«¬¦¡

³o¥|­Ó¤@²Õªº¤èµ{¦¡´y­z©Ò¦³¥¨Æ[ªººÏ¡B¹q¡B¥ú²{¶H¡A¬Æ¦Ü¥úªº³t«×¤]Âæb¨ä¤¤¡C©T©wªº¥ú³t­ÈÁÙ¤Þµo¤Fªñ¥Nª«²zªº·s­²©R¡C

 

 

ª«½èªººÏ©Ê

 

ºÏÅK

¦aºÏªºµo¥Í¡A¹q°Ê¾÷­ì²z

http://en.wikipedia.org/wiki/Dynamo_theory

¬ã¨s®ü¬v¤s¯á¨â°¼ªºªO¶ô¡]¨£¹Ï¡^¡A¬ù¨C¦Ê¸U¦~¤ÏÂà

http://www.sciscape.org/news_detail.php?news_id=1477

 

ºÏ©Ê»P¹q¤l

¦Û±ÛºÏ°¸·¥

μs = − e/m S

S ¤£¦P©óªº¥j¨å¤O¾Ç¤¤ªº¨¤°Ê¶q¡A¥¦¦³¨â­Ó­nÂI¡G

(1) S ¥»¨­µLªk´ú¶q¡A¤Ï¦Ó¬Oªu¥ô¤@¶bªº¤À¶q¥i¥H³Q´ú¶q

(2) S ªº¥i´ú¶q¤À¶q¬O¶q¤l¤Æªº

Sz = ms h/2π¡A¨ä¤¤ ms = ± 1/2 ¡]h/2π= h¡A¬G Sz = msh¡^

·í¹q¤l¸m©ó¥~¥[ºÏ³õ Bext ¤¤¡A

U = −μs· Bext = − μs,z Bext ¡]¨ä¤¤ z ¬° Bext ¤§¤è¦V¡^

 

§â¹q¤l·Q¹³¦¨¤ô²yªº¼Ò«¬¨Ó²z¸Ñ "¦Û±Û"¡]¦ý¨Æ¹ê¤W¨Ã¤£±ÛÂà¡^¡A¨£¹Ï 32-9

½è¤l»P¤¤¤l¤]¦U¦³¨ä¨¤°Ê¶q¤ÎºÏ¯x¡A¹ï½è¤l¦Ó¨¥¦¹¨âªÌ¦P¦V¡A¹ï¤¤¤l¦Ó¨¥¦¹¨âªÌ¤Ï¦V¡A³o¨Ç°¸·¥¯x¹ï­ì¤lºÏ³õªº°^Äm¤ñ¹q¤lªº¤p¤@¤d­¿¡C

 

 

­y°ìºÏ°¸·¥

μorb = − e/2m Lorb

Lorb ¤£¯à³Q´ú¶q¡A¥u¦³ªu¥ô·N¤è¦Vªº¤À¶q¡A¦p Lorb,z¡A¥i¥H

Lorb,z = ml h ¡Aml = 0, ±1, ±2, ±3, ... , ± max

U = −μorb· Bext = − μorb,z Bext ¡]¨ä¤¤ z ¬° Bext ¤§¤è¦V¡^

 

¹q¤l­y¹Dªº°j¸ô¼Ò«¬

°²³]¹q¤l¥H¤j©ó­ì¤l¥b®|«Ü¦hªº¶ZÂ÷¶­ì¤l§@¶ê©P¹B°Ê

μorb = i A

¸ÕµÛ©w i

¹q²ü e¡B¶g´Á T = 2 π r / v

i = e / T = e v / 2 π r

±N°j¸ô­±¿n A = π r2 ³s¦P i ¤@°_¥N¤J¡A¦³

μorb = i A = e v r / 2

¦Ó¨¤°Ê¶q l = m (r × v)

Lorb = m r v sin 90° = m r v

μorb = − e/2m Lorb

μorb = − e/2m Lorb

³o¦³²Å¦X«e­±­y°ìºÏ¯xªºµ²ªG¡C

½Ðª`·N¦¹¦¡¤£¾A¥Î©ó¦b­ì¤l¤º¤§¹q¤l¡A¦]»P¨ä¥L²z½×¤Î¹êÅ礣²Å¦X¡C

 

«D§¡¤Ã³õ¤¤ªº°j¸ô¼Ò«¬

¨£¹Ï 32-11¡AºÏ°¸·¥¯x¦³¨ü¨ìºÏ¤O¡C

dF = i L × Bext

 

ºÏ©Ê§÷®Æ

¤ÏºÏ©Ê

¤j³¡¤À§÷®ÆÄݤ§¡C¦b¥~¥[³õ¤¤³Q¤Þµo¹ï§Ü¡]±Æ¥¸¡^¥~¥[³õªº®zºÏ¯x¡C

¶¶ºÏ©Ê

¹L´ç¡Aµ}¤g¤¸¯À¡A­ì¤l¤W¦³¿W¥ßªººÏ¯x¡C

ÅKºÏ©Ê

­ì¤l¤WªººÏ¯x¥æ´«½¢¦X¦Ó±Æ¦C°_¨Ó¡C

 

¤ÏºÏ©Ê

§Q¥Î¤U­±¹Ï 32-11¡A°Q½×·«¦¸©w«ß³y¦¨¤§ºÏ°¸·¥¯x

¥ß§÷®Æ²£¥Í¤Ï¦VªººÏ¯x¡A­Y¸ÓºÏ³õ«D§¡¤Ã¡A«h¤ÏºÏ§÷®Æ¨ü¥¸¤O¡A±N¤ÏºÏ§÷®Æ±qºÏ³õ±j³B²¾¦Ü®z³B¡C

Äa¯B©óºÏ³õ¤¤ªº«Cµì¡A¨£¹Ï 32-12

ºÏ²~®·®»¦b¦¹±o¨ì¸ÑÄÀ

 

¶¶ºÏ©Ê

¦b¥~¥[ºÏ³õ¼vÅT¤U¡A­ì¤lºÏ±ÆÁͦV¶V¾ã»ô±Æ¦C¦Ó¦³²bºÏ¯x¡C¦¹ºÏ¯x¨Ã¥B³Q³QºÏ³õ§l¤Þ¡C

ºÏ¤Æ±j«× M = ´ú±o¤§ºÏ¯x / Åé¿n

M = C Bext / T

¨£¹Ï¡A¶È¾A©ó¤p Bext / T ­È

 

ÅKºÏ©Ê

ºÏ°ì¡]ºÏ°Ï¡^

Âǥѩҿתº "¥æ´«½¢¦X" (exchange coupling)¡A¾Fªñ­ì¤l¤WªººÏ¯x·|±Æ¦C°_¨Ó¡A§Î¦¨±j¤jªººÏ³õ¡]ºÏ¯x¡^¡C ¥s¦Ûµo©ÊºÏ¤Æ

§Y¨Ï­ì¤l±Æ¨ì¾ã»ôªº³æ´¹§ÎºA¡A¤]¦³¤£¦PºÏ°ì¡A­ì¤lºÏ¯x¥u¦bºÏ°ì¤¤±Æ¦C¾ã»ô¡A¤£¦PºÏ°ì¶}ºÏ¯x¤è¦V¤£¦P¦Ó©è®ø¡C

­Y¶W¹L§÷®Æªº©~§·Å«×¡A«h¤£¦A¦³¦ÛµoºÏ¤Æ²{¶H¦ÓºÏ°ì¤¤ªººÏ¯x¤£¦A¾ã»ô±Æ¦C¡A¾É­PºÏ©Ê®ø¥¢¡C¡]¤j¦P¹qÁçµN¦n¶º¦Û°Ê¸õ«O·Å´N¬O§Q¥ÎºÏÅKªº©~²z·Å«×¡C¡^

 

¾Àµe°O¿ýµÛ¦a²yºÏ³õ

¬õ¦âÃC®Æ¨ªÅKÄq¤@·LÁû²É§Y¬O³æ¤@ºÏ°ì¡A¬G¦³¯S©w°¸·¥¯x¡C§@µe®É踮ƧdÄa¯B²G§ÎºA¡AºÏ¯x¨ü¦aºÏ¼vÅT«ü¦V«n¥_¡A°®«á¤è¦V©T©w¡C§Q¥Î¦~¥N¤[»·ªº¾Àµe¥i¤ÀªR¥X·í®É¦aºÏ¤§¤è¦ì¡C

 

ºÏº¢

ºÏº¢¦±½u¡A¨£¹Ï

"°O¾Ð" §@¥Î

"°O¾Ð" §@¥Î¹ï°O¿ý´CÅé¡]¦pºÏºÐ¤ù¡^«Ü­«­n¡C¡]§_«h´N°O¤£¤F¸ê°T¤F¡^

 

 

 

 

 


 

¹qºÏªi

 

°¨§J´µ«Âº¸ªº±m­i

°¨§J´µ«Âº¸ªº­«¤j¦¨´N¬OÃÒ©ú¤F¥ú´N¬O¹q³õ»PºÏ³õ©Ò§Î¦¨ªº¹qºÏªi¡C

 

¦æ¶i¹qºÏªiªºªº©w©Ê¤ÀªR

²£¥Í¦æ¶i¹qºÏªiªº¸Ë¸m

¨£¹Ï 33-3¡A¤@­Ó RLC ¹q¸ô¨Ã°t¦X¤Ñ½u¡A´N¯à°÷µo®g¹qºÏªi¡C

 

¦æ¶i¹qºÏªiªº­«­n¯S¼x

1. E¡BB ¦U¦Û««ª½©ó¦æ¶i¤è¦V

2. E¡BB ¤¬¬Û««ª½

3. E × B §Y¬Oªi¦æ¶iªº¤è¦V

4. ³õÁ`¬O¨Ì¥¿©¶«¬¦¡¦b§ïÅÜ

 

E = Em sin(kx - ωt)

B = Bm sin(kx - ωt)

ªi³t

c = 1 / √(μ0ε0)

E / B = c

 

¤@­Ó³ÌÃø¥H²z¸Ñªºªi

¹qºÏªi¨Ã¨S¦³¡]¤£»Ý­n¡^¶Ç¼½ªº´C¤¶¡A¥ú³t¦b©Ò¦³®y¼Ð¨t¤¤³£¤§¤@¼Ëªº­È¡C¥¦»P®É¶¡¤@°_¡A¬O®ÉªÅ¶¡µ²ºcªº¤@³¡¤À¡C

 

¦æ¶i¹qºÏªiªºªº©w¶q¤ÀªR

¹q³õ»PºÏ³õ­ÌÂù­«·PÀ³¥i´£¨Ñ§Ú­Ì¥ú¡C

±À¾É Em / Bm = c

¦b dx ªº¶ZÂ÷¤§¨âºÝ¡A¹q³õ¬° E »P E + dE¡A¨ú h §@ªø¦Ó»P dx ªº¼e§Î¦¨ªº­±¿nùØ¡A°Q½×¸Ó­±¿n°j¸ô¤¤ªº·PÀ³ºÏ³õ¡A§Q¥Îªk©Ô²Ä©w«ß

CL E · ds = − dΦB / dt

CL E · ds = ( E + dE ) h - E h = h dE

ΦB = ( B ) ( h dx )¡A¬G

B / dt = h dx dB/dt

¥N¤Jªk©Ô²Ä©w«ß¡A±o

h dE = - h dx dB/dt

§Y dE / dx = -dB / dt

¨Æ¹ê¤W¡AE¡BB ¬Ò¬°®É¶¡»PªÅ¶¡ªº¨ç¼Æ¡A¤W¦¡À³§@

∂E / ∂x = -∂B / ∂t

§Ú­Ì§â E = Em sin(kx - ωt) ¤Î B = Bm sin(kx - ωt) ·í§@¬O¤vª¾¡A«h¦³

∂E / ∂x = k Em cos(kx - ωt)

∂B / ∂t = - ωBm cos(kx - ωt)

¬G¦³

k Em cos(kx - ωt) = ωBm cos(kx - ωt)

k Em = ωBm

§Ú­Ìª¾¹D¦æ¶iªiªºªi³t¡]¬Û³t«×¡^¬O ω/ k ¡A¬G

Em / Bm = ω/ k = c

 

±À¾É c = 1 / √(μ0ε0)

¨£½Ò¤å

¹Ï 33-7

°Q½× dx ½d³ò¨â°¼ªººÏ³õ­È B »P B + dB¡A§Q¥ÎºÏ³õÀô¸ô¿n¤À»P¹q³q¶qÅܤÆÃö«Yªº ¦w°ö¡Ð°¨§J´µ«Âº¸·PÀ³©w«ß

CL B · ds = ε0 μ0E / dt

CL B · ds = - (B + dB) h + B h = -h dB

½Ðª`·N¥Ñ©ó°j¸ô¤è¦Vªº³]©w¡A¤W¦¡ªº²Ä¤@¶µ¬O­tªº

ΦE = ( E ) (h dx)

¹ï¤W¦¡·L¤À

E / dt = h dx (dE / dt)

¥t¥~ª`·N ¤W¦¡¹ï®É¶¡·L¤À¤£·|§@¥Î¨ì dx¡A¦]¬°³oùر´°Qªº¨ç¼Æ¬O³õ¡A¹ï³õ¦Ó¨¥ x ¥u¬OªÅ¶¡ªº»R¥x¦ÛÅܼơA¤£¹³¬O²É¤lªº­y¸ñ¨ç¼Æ x(t) ¨º¼Ë¡C

¥þ³¡¥N¤J¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß¡A±o

-h dB = ε0 μ0 h dx (dE / dt)

-∂B / ∂x = ε0 μ0 ∂E / ∂t

²{¦b¥N¤J B¡BE ªº¦æ¶iªiªº¥¿©¶¨ç¼Æ

- k Bm cos(kx - ωt) = -ε0 μ0 ωEm cos(kx - ωt)

k Bm = ε0 μ0 ωEm

Em / Bm = 1/ ( ε0 μ0 (ω/k) ) = (1/ ε0μ0 ) (1/ ( ω/ k ) ) = 1/ ε0μ0 c

¥Ñ«e­±¤vª¾ªº Em / Bm = c¡A«h±o

c = 1 / √ ε0μ0

¡]±q³oùاA¥i¥H¬Ý¨ì¡A¥ú³t´NÂæb°¨§J´µ«Âº¸¤èµ{¦¡²ÕùØ¡C¥ú³tªº´ú¶q¡A¥i¥H¤À§O°µ¹q®e¤Î¹q·P¹êÅç¨Ó¶q¨ì¡C¡^

 

¯à¶q¶Ç¿é»Pªi¦L«F¦V¶q

S = 1 / μ0 E × B

S = 1 / μ0 E B

¦]¬° E / B = c

S = 1/(cμ0) E2

¥H¤W¬OÀþ¶¡ªº¯à¶q¬y²v

I = Savg = 1/(cμ0) [ E2 ]avg = 1/(cμ0) [ Em2 sin2(kx - ωt) ]avg

Erms = Em / √2

I = 1/(cμ0) Erms2

°Ý¡A³oùØ­±¹q³õ¦û¤j³¡¤À¶Ü¡H

¥Ñ¹q³õªº¯à¶q±K«×¥Xµo®i¶}

uE = 1/2 ε0 E2 = 1/2 ε0 (cB)2 = 1/2 ε0 c2 B2 = 1/(2μ0) B2 = uB

«ê¦nµ¥©óºÏ³õ¯à¶q±K¡C¦]¦¹¡A³oùØ­±ªº¹q³õ¯à¶q±K«×»PºÏ³õ¯à¶q±K«×¬O¤@¼Ë¤jªº¡C

 

±j«×ÀHµÛ¶ZÂ÷¦Ó§ïÅÜ

¤@­Ó¯u¹êªº¹qºÏ´T®g·½¡A¨ä±j«×ÀH¶ZÂ÷ªºÅܤƬO½ÆÂ÷ªº

°ò©ó¯à¶q¦u«í¡A¦Ò¼{¬°ÂI¥ú·½

±j«× = ¥\²v / ­±¿n = Ps / 4 π r2

 

¥ú¤§´T®gÀ£

¥ú¤£¦ý¦³¯à¶q¡A¤]¦³°Ê¶q¡C

§¹¥þ§l¦¬©Ò³y¦¨ªº°Ê¶q§ïÅÜ

Δp = ΔU / c

ªu­ì¸ô®|©Ò³y¦¨ªº°Ê¶q§ïÅÜ

Δp = 2 ΔU / c

­Y¬O³¡¤À§l¦¬³¡¤À¤Ï®g¡A«h°Ê¶q§ïÅܤ¶©ó¤W¨âªÌ¤§¶¡¡C

¥Ñ¤û¹y©w«ß¡A°Ê¶qÅܤƻP¤O¤§¶¡ªºÃö«Y¬°

F = Δp / Δt

¥t¥~¡A¬°ªíµy«á­n¥H´T®g±j«× I ¨Óªí¥Ü´T®gÀ£¡A½Ðª`·N±j«×¬O

±j«× = ¥\²v¡þ­±¿n = ¡]¯à¶q¡þ®É¶¡¡^¡þ­±¿n

¬G¦³

ΔU = I A Δt

«h¡A¹ï§¹¥þ§l¦¬

F = Δp / Δt = ΔU / ( c Δt ) = I A Δt / ( c Δt ) = I A / c

¹ï§¹¥þ¤Ï®g

F = Δp / Δt = 2 ΔU / ( c Δt ) = 2 I A Δt / ( c Δt ) = 2 I A / c

«h´T®gÀ£¡A¹ï§¹¥þ§l¦¬¬°

pr = I / c

¹ï§¹¥þ¤Ï®g

pr = 2 I / c

 

´T®gÀ£ª±¨ã Radiometer

http://www.youtube.com/watch?v=MbdPgc7e0R0&feature=related

 

 

°¾®¶

¹q³õ¬O¦b¤@­Ó¥­­±¤W®¶Àú¡A¨£¹Ï 33-9

 

°¾®¶¥ú

¹qµø»Oµo¥Xªº¹qºÏªi¦³¯S©w°¾®¶¤è¦V¡A¤@¯ë¥ú·½©Î¤é¥ú«h¬OÀH¾÷°¾®¶¡A¤]¥s«D°¾®¶

¥iÂǥѳq¹L°¾®¶¤ù¦Ó§â«D°¾®¶¥úÅܦ¨³¡¤À©Î§¹¥þ°¾®¶¥ú¡A¦¹¦]°¾®¶¤ù¤W¦³±Æ¦C¾ã²z¦p²p·¾ªºªøÃì¤À¤l¡C

 

¬ï³z¤§°¾®¶¥úªº±j«×

I = I0 / 2

¹ï¤v°¾®¶ªº¥ú¦Ó¨¥¡A­Y θ ¬°»P°¾®¶¤ù¤¹³\¹q³õ³q¹L¤è¦V¤§§¨¨¤

Ey = E cosθ

I = I0 cos2θ

¨£ ¨ÒÃD 33-2 ¤§¹Ï

 

 

°¾¥ú¤ùªº¥Í¬¡À³¥Î

3D ¹q¼v

 

³¨³½¡B¶}¨®¥Î¤Ó¶§²´Ãè

 

³z¹L½wºC±ÛÂ઺°¾¥ú¤ù¨Ó¬Ý®Ñ¥»¦L¨êªo¾¥©Òµo¥X¨Óªº¬¯¥ú¡]±Ð«Ç²{³õ¦Û»s¼v¤ù¡AÂIÀ»¤U¹Ï§Y¥i¼·©ñ¡^

 

±Û¥ú©Ê»P¿}«×ÀË´ú

¿}¤À¤l¦³±Û©Ê¡]¦p¥ª¥k¤â¦³Ãè¹³©ÊºÙ¡A¦ý¥ª¥k¤â«o¤£¤@¼Ë¡^

 

©µ¦ù¸É¥R¡G¤Ï®g»P§é®gªº­ì²z

¤O¾Ç¬Oª«²z¾Çªº®Ö¤ß²z½×¡Aª«²zªº©w«ß´y­zª«²z¶q¤§¶¡ªºÃö«Y¡A¦Ó¤O¾Ç«h¸Õ¹Ï¨t²Î¤Æ¦a«Ø¥ß¦u«í¶q»P¦u«í«ß¡]¹ïºÙ©Ê¡^¡C¤O¾Çªºµ¦²¤­n§ä±`¼Æ¡]¦u«í¶q¡^¡A¦p¯à¶q¡A°£¦¹¤§¥~¡A¤O¾Ç¤]«Ø¥ß¤@¨Ç¶q¡]¨Ò¦p§@¥Î¶q¡^¡A¦Ó¨º¨Ç¶qªº·¥­È·|µ¹¥Xª«²z©w«ß¡C

¶Oº¿ªº³Ì³t¸ô®|­ì²z

±q¤@ÂI¨ì¥t¤@ÂI¡A¥ú¨« δL = 0 ªº¸ô®|¡A¨ä¤¤ L ¬O§é®g²v­¼¤W¸ô®|ªº©M¡C

±À¾É§é®g©w«ß

¹Ï«Ý´Ó¤JPauli Lecture of Physics Vol.2 Fig.1.2

L = n1 P1Q + n2 P2Q

L = n1 a1/cosθ1 + n2 a2/cosθ2

¤S¡A»²§U±ø¥ó

A1A2 = n1 a1tanθ1 + n2 a2tanθ2 = ±`¼Æ

§Q¥Î Lagrange multiplier ¤èªk

δL + λ δ(A1A2) = 0

δ( n1 a1/cosθ1 + n2 a2/cosθ2 ) + λ δ( n1 a1tanθ1 + n2 a2tanθ2) = 0

θ1 »P θ2 ¬°¿W¥ßªº¦ÛÅܼơA¨ÌÅܤÀªk­ì¦¡¾ã²z¬°

a1 ( n1sinθ1/ cos2θ1 + λ 1/ cos2θ1) δθ1 + a2 ( n2 sinθ2/ cos2θ2 + λ 1/ cos2θ2 ) δθ2 = 0

«h δθ1 »P δθ2 ªº«Y¼Æ¦U¦Û¥²¶·¬°¹s¡A§Y

n1 sinθ1 + λ = 0 ¡A¥B

n2 sinθ2 + λ = 0

®ø°£¤W¨â¦¡¤§ λ¡A«h

n1 sinθ1 = n2 sinθ2

±oÃÒ¡C

 

±À¾É¤Ï®g©w«ß

¨£¹Ï Fig. 1.3

§Q¥Î»²§U½u¡A³]©w P ÂIªºÃè¹³ P* ÂI¡]§¹¥þ¨S¦³¼vÅTµ²ªG¡A³o¥u¬OÅý§Ú­Ì®e©ö¬Ý¹Ï¡^¡A«h§Ú­Ì°ò©ó¤T¨¤§Î¨âÃä©M¤§ªø¤j©ó²Ä¤TÃä¡G

P0Q' + Q'P* > P0Q + QP*

°ò©ó¦¹Ãö«Y¡A¥ú¾Ç¸ô®|¦]¦¹¬O·¥¤p­Èªº PQ ¦A P0Q ¡A¤]´N¬O

θ0 = θ

±oÃÒ¡C

 

¤Ï®g

¨£¹Ï 33-15

¤Ï®g©w«ß

θ'1 = θ1

 

³z©ú¤¶½è¤¤ªº¹qºÏªi¡]§é®g¡^

§é®g©w«ß¡]´µ¯I¦Õ©w«ß¡^

n1 sinθ1 = n2 sinθ2

 

¦â´²

§é®g²v»Pªiªø¦³Ãö

¨£¹Ï 33-17¡B18¡B19

 

±m­i

¨£¹Ï 33-20

 

¥þ¤Ï®g

±q±K¤¶½è¨ì²¨¤¶½èªº§é®g¡A¦³¥i¯àµo¦Ü¤@­Ó±¡ªp¡A§Y¥X®g¨¤«×µ¥©ó 90 «×

n1 sinθ1 = n2 sin 90°

Æp¥Û

¥úÅÖ

 

¥Ñ¤Ï®g²£¥Í¤§°¾®¶

¸g¥Ñ¤ô­±©Î¬Á¼þ¤Ï®g¥Xªº¥ú³q±`¬O³¡¤À°¾®¶©Î¤§§¹¥þ°¾®¶ªº¡C°¾®¶ªº¤è¦V¬O¥­¦æ©ó¬É­±¡C

¥¬¾|´µ¯S¨¤

¤J®g¡B¤Ï®g¡B§é®g©Òºc¦¨ªº¤§®íÃö«Y

­º¥ý¡A¤J®g¨¤µ¥©ó¤Ï®g¨¤¡A¦Ó§é®g¨¤«h¨ú¨M©ó§é®g²v¡A¦pªG¤Ï®g½u»P§é®g½u§¨¨¤ 90 «×¡A«h¤Ï®g½u§¹¥þ¨S¦³¹q³õ««ª½©ó¬É­±ªº¦¨¤À¡C

¦p¦ó²z¸Ñ³o­Ó²{¶H¡H¬Ý¹Ï¡A««ª½°¾®¶ªº§é®g½u¨ä¹q³õ»P¤Ï®g½u¬O¥­¦æªº¡A¥i¥H·Q¹³¦b¬É­±¤WªºÃä¬É±ø¥ó¤£²Å¦X³sÄò©Ê¡C

θB + θr = 90°

¥Ñ§é®g©w«ß

n1 sinθB = n2 sinθr

¥N¤J¨ä©M¬° 90° ªº±ø¥ó

n1 sinθB = n2 sin( 90° - θB ) = n2 cosθB

§Y

θB = tan-1 n2 / n1

­Y¤J®g¤Ï®g¨º¤@°¼¬OªÅ®ð¡A«h n1 ¥i·í§@ 1¡A¤W¦¡§Y¦¨¬° ¥¬¾|´µ¯S©w«ß

θB = tan-1 n

 

 

¨ÒÃD

33-2

33-5

 

µê³¡§é®g²v¡]§l¦¬¡^