°¨§J´µ«Âº¸¤èµ{¦¡¡Bª«½èªººÏ©Ê¡B¹qºÏªi
°¨§J´µ«Âº¸¤èµ{¦¡
ºÏ³õªº°ª´µ©w«ß
ºÏ³æ·¥¡]¥Ø«e©Òª¾¡^¨Ã¤£¦s¦b
ΦB = ∫CS B · dA = 0
¤ñ¸û¹q³õªº°ª´µ©w«ß
ΦE = ∫CS E · dA = qenc / ε0
ºÏ§é¦¨´X¬q¡A¨C¤@¬q³£Åܦ¨ºÏÅK¡A¦U¦Û¦³ N¡BS ·¥¡A¦p¹Ï 32-2
°Q½×ÃD¡G©Ò¥H¡A¥´Â_ªººÏÅK¡A¬ù¥½¦Û¤w¥i¥H§l¦b¤@°_«O«ùì¨Óªº§Îª¬¡A¹ï¶Ü¡H
·PÀ³²£¥ÍªººÏ³õ (Induced Magnetic Fields)
ªk©Ô²Ä·PÀ³©w«ß¬O "ºÏÅܥ͹q"
∫CL E · ds = - dΦB / dt
¦Ó°¨§J´µ«Âº¸·PÀ³©w«ß«h¬O "¹qÅܥͺÏ"
∫CL B· ds = μ0ε0 dΦE / dt
¹êÅçÃÒ©úªº½T¦p¦¹¡C
³oºØ·PÀ³ªº¤@Ó¯S®í¨Ò¤l¬O¥¿¦b¥R¹q¤¤ªº¹q®e¾¹
¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß
¦^¾Ð¦w°ö©w«ß
∫CL B · ds = μ0 ienc
¦Ó«e¤@¤p¸`ªº°¨§J´µ«Âº¸·PÀ³©w«ßµ¥¸¹¥ªÃä¡A¤]¥X²{¦P¼ËªººÏ³õÀô¸ô¿n¤À¡A§ÚÌ¥i¥H¦X¨Ö³o¨âÓ¤èµ{¦¡¡G
∫CL B · ds = μ0ε0 dΦE / dt + μ0 ienc
ºÙ¬° ¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß
¦ì²¾¹q¬y
³o¬O°¨§J´µ«Âº¸³Ì«á²Î¦X¥|±ø¤@²Õ¤èµ{¦¡ªº³Ì«á¤@¶ô«÷¹Ï¡]¹F¦¨¤½¦¡ªº¬üÄR»P§¹¾ã¡^¡C§Ú̬ݤW±ªº ¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß¤§µ¥¸¹¥kÃ䪺¨â¶µ¡A¦Ó³]·Q¤@°²·Q¹q¬y¡A¦ì²¾¹q¬y
id = - ε0 dΦE / dt
«h
∫CL B · ds = μ0 id,enc + μ0 ienc
¦p¦¹¡A´N³£¥i¥Î¹q¬y·½¨Ó²z¸ÑºÏÀô¸ô¡C
¦ì²¾¹q¬yªºª«²z·N¸q
Åܰʤ¤ªº¹q³õ¡A¥iµø¬°¹q®e¤Wªº¥R¹q¹q²ü¥¿¦bÅܤƼƶq¡]¦]¦¹¹q¤O½uªº¼Æ¥Ø¤]¤~·|Åܤơ^¡A¦Ó¯à³y¦¨¹q®e¥R¹qªº¡A¥¿¬O¹q¬y¡C¦¹¹q¬y¤£¬O¯u¦³¹q²ü¶Ç¿é¹L¥h¡A¦Ó¬O²Ö¿n¦b¹q®e¾¹¤Wªº¹q²ü¤ÀÂ÷¡A¦]¦¹¤~¥s¹q¦ì²¾¡C¬G³y¦¨Ãþ¦ü¹q®e¾¹¥R¹qªº¥R¹q®ÄÀ³ªº°²·Q¹q¬y¡A¥s¦ì²¾¹q¬y¡C
¨D·PÀ³ºÏ³õ
¹ï¥b®| R¡A¥¿¦b¥R¹qªº¥ªO¹q®e¡A§ÚÌ¥i¥Î id ¨Ó¨D·PÀ³ºÏ³õªº¤j¤p¡A¹q®e¤§¤º¶Z¤¤¤ß¬° r ªºÂI¨äºÏ³õ¤j¤p¬°¡A
B = (μ0 id / 2πR2) r
¦b¹q®e¾¹¥~«h¬O
B = μ0 id / 2πr
°¨§J´µ«Âº¸¤èµ{¦¡¡]²Õ¡^
¦b¨S¦³¤¶¹q½è©ÎºÏ©Ê½è¦s¦bªº±¡ªp¤U¡A¥|±ø¤èµ{¦¡¾ã²z¦p ªí 32-1 ¡G
°ª´µ©w«ß
ºÏ¾Ç°ª´µ©w«ß
ªk©Ô²Ä·PÀ³©w«ß
¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß
°¨§J´µ«Âº¸¤èµ{¦¡¡]²Õ¡^¤]¦³·L¤À«¬¦¡
³o¥|Ó¤@²Õªº¤èµ{¦¡´yz©Ò¦³¥¨Æ[ªººÏ¡B¹q¡B¥ú²{¶H¡A¬Æ¦Ü¥úªº³t«×¤]Âæb¨ä¤¤¡C©T©wªº¥ú³tÈÁÙ¤Þµo¤Fªñ¥Nª«²zªº·s²©R¡C
ª«½èªººÏ©Ê
ºÏÅK
¦aºÏªºµo¥Í¡A¹q°Ê¾÷ì²z
http://en.wikipedia.org/wiki/Dynamo_theory
¬ã¨s®ü¬v¤s¯á¨â°¼ªºªO¶ô¡]¨£¹Ï¡^¡A¬ù¨C¦Ê¸U¦~¤ÏÂà
http://www.sciscape.org/news_detail.php?news_id=1477
ºÏ©Ê»P¹q¤l
¦Û±ÛºÏ°¸·¥
μs = − e/m S
S ¤£¦P©óªº¥j¨å¤O¾Ç¤¤ªº¨¤°Ê¶q¡A¥¦¦³¨âÓnÂI¡G
(1) S ¥»¨µLªk´ú¶q¡A¤Ï¦Ó¬Oªu¥ô¤@¶bªº¤À¶q¥i¥H³Q´ú¶q
(2) S ªº¥i´ú¶q¤À¶q¬O¶q¤l¤Æªº
Sz = ms h/2π¡A¨ä¤¤ ms = ± 1/2 ¡]h/2π=
h¡A¬G Sz = msh¡^·í¹q¤l¸m©ó¥~¥[ºÏ³õ Bext ¤¤¡A
U = −μs· Bext = − μs,z Bext ¡]¨ä¤¤ z ¬° Bext ¤§¤è¦V¡^
§â¹q¤l·Q¹³¦¨¤ô²yªº¼Ò«¬¨Ó²z¸Ñ "¦Û±Û"¡]¦ý¨Æ¹ê¤W¨Ã¤£±ÛÂà¡^¡A¨£¹Ï 32-9
½è¤l»P¤¤¤l¤]¦U¦³¨ä¨¤°Ê¶q¤ÎºÏ¯x¡A¹ï½è¤l¦Ó¨¥¦¹¨âªÌ¦P¦V¡A¹ï¤¤¤l¦Ó¨¥¦¹¨âªÌ¤Ï¦V¡A³o¨Ç°¸·¥¯x¹ïì¤lºÏ³õªº°^Äm¤ñ¹q¤lªº¤p¤@¤d¿¡C
y°ìºÏ°¸·¥
μorb = − e/2m Lorb
Lorb ¤£¯à³Q´ú¶q¡A¥u¦³ªu¥ô·N¤è¦Vªº¤À¶q¡A¦p Lorb,z¡A¥i¥H
Lorb,z = ml
h¡Aml = 0, ±1, ±2, ±3, ... , ± maxU = −μorb· Bext = − μorb,z Bext ¡]¨ä¤¤ z ¬° Bext ¤§¤è¦V¡^
¹q¤ly¹Dªº°j¸ô¼Ò«¬
°²³]¹q¤l¥H¤j©óì¤l¥b®|«Ü¦hªº¶ZÂ÷¶ì¤l§@¶ê©P¹B°Ê
μorb = i A
¸ÕµÛ©w i
¹q²ü e¡B¶g´Á T = 2 π r / v
i = e / T = e v / 2 π r
±N°j¸ô±¿n A = π r2 ³s¦P i ¤@°_¥N¤J¡A¦³
μorb = i A = e v r / 2
¦Ó¨¤°Ê¶q l = m (r × v)
Lorb = m r v sin 90° = m r v
μorb = − e/2m Lorb
μorb = − e/2m Lorb
³o¦³²Å¦X«e±y°ìºÏ¯xªºµ²ªG¡C
½Ðª`·N¦¹¦¡¤£¾A¥Î©ó¦bì¤l¤º¤§¹q¤l¡A¦]»P¨ä¥L²z½×¤Î¹êÅ礣²Å¦X¡C
«D§¡¤Ã³õ¤¤ªº°j¸ô¼Ò«¬
¨£¹Ï 32-11¡AºÏ°¸·¥¯x¦³¨ü¨ìºÏ¤O¡C
dF = i L × Bext
ºÏ©Ê§÷®Æ
¤ÏºÏ©Ê
¤j³¡¤À§÷®ÆÄݤ§¡C¦b¥~¥[³õ¤¤³Q¤Þµo¹ï§Ü¡]±Æ¥¸¡^¥~¥[³õªº®zºÏ¯x¡C
¶¶ºÏ©Ê
¹L´ç¡Aµ}¤g¤¸¯À¡Aì¤l¤W¦³¿W¥ßªººÏ¯x¡C
ÅKºÏ©Ê
ì¤l¤WªººÏ¯x¥æ´«½¢¦X¦Ó±Æ¦C°_¨Ó¡C
¤ÏºÏ©Ê
§Q¥Î¤U±¹Ï 32-11¡A°Q½×·«¦¸©w«ß³y¦¨¤§ºÏ°¸·¥¯x
¥ß§÷®Æ²£¥Í¤Ï¦VªººÏ¯x¡AY¸ÓºÏ³õ«D§¡¤Ã¡A«h¤ÏºÏ§÷®Æ¨ü¥¸¤O¡A±N¤ÏºÏ§÷®Æ±qºÏ³õ±j³B²¾¦Ü®z³B¡C
Äa¯B©óºÏ³õ¤¤ªº«Cµì¡A¨£¹Ï 32-12
ºÏ²~®·®»¦b¦¹±o¨ì¸ÑÄÀ
¶¶ºÏ©Ê
¦b¥~¥[ºÏ³õ¼vÅT¤U¡Aì¤lºÏ±ÆÁͦV¶V¾ã»ô±Æ¦C¦Ó¦³²bºÏ¯x¡C¦¹ºÏ¯x¨Ã¥B³Q³QºÏ³õ§l¤Þ¡C
ºÏ¤Æ±j«× M = ´ú±o¤§ºÏ¯x / Åé¿n
M = C Bext / T
¨£¹Ï¡A¶È¾A©ó¤p Bext / T È
ÅKºÏ©Ê
ºÏ°ì¡]ºÏ°Ï¡^
Âǥѩҿתº "¥æ´«½¢¦X" (exchange coupling)¡A¾Fªñì¤l¤WªººÏ¯x·|±Æ¦C°_¨Ó¡A§Î¦¨±j¤jªººÏ³õ¡]ºÏ¯x¡^¡C ¥s¦Ûµo©ÊºÏ¤Æ
§Y¨Ïì¤l±Æ¨ì¾ã»ôªº³æ´¹§ÎºA¡A¤]¦³¤£¦PºÏ°ì¡Aì¤lºÏ¯x¥u¦bºÏ°ì¤¤±Æ¦C¾ã»ô¡A¤£¦PºÏ°ì¶}ºÏ¯x¤è¦V¤£¦P¦Ó©è®ø¡C
Y¶W¹L§÷®Æªº©~§·Å«×¡A«h¤£¦A¦³¦ÛµoºÏ¤Æ²{¶H¦ÓºÏ°ì¤¤ªººÏ¯x¤£¦A¾ã»ô±Æ¦C¡A¾ÉPºÏ©Ê®ø¥¢¡C¡]¤j¦P¹qÁçµN¦n¶º¦Û°Ê¸õ«O·Å´N¬O§Q¥ÎºÏÅKªº©~²z·Å«×¡C¡^
¾Àµe°O¿ýµÛ¦a²yºÏ³õ
¬õ¦âÃC®Æ¨ªÅKÄq¤@·LÁû²É§Y¬O³æ¤@ºÏ°ì¡A¬G¦³¯S©w°¸·¥¯x¡C§@µe®É踮ƧdÄa¯B²G§ÎºA¡AºÏ¯x¨ü¦aºÏ¼vÅT«ü¦V«n¥_¡A°®«á¤è¦V©T©w¡C§Q¥Î¦~¥N¤[»·ªº¾Àµe¥i¤ÀªR¥X·í®É¦aºÏ¤§¤è¦ì¡C
ºÏº¢
ºÏº¢¦±½u¡A¨£¹Ï
"°O¾Ð" §@¥Î
"°O¾Ð" §@¥Î¹ï°O¿ý´CÅé¡]¦pºÏºÐ¤ù¡^«Ü«n¡C¡]§_«h´N°O¤£¤F¸ê°T¤F¡^
¹qºÏªi
°¨§J´µ«Âº¸ªº±mi
°¨§J´µ«Âº¸ªº«¤j¦¨´N¬OÃÒ©ú¤F¥ú´N¬O¹q³õ»PºÏ³õ©Ò§Î¦¨ªº¹qºÏªi¡C
¦æ¶i¹qºÏªiªºªº©w©Ê¤ÀªR
²£¥Í¦æ¶i¹qºÏªiªº¸Ë¸m
¨£¹Ï 33-3¡A¤@Ó RLC ¹q¸ô¨Ã°t¦X¤Ñ½u¡A´N¯à°÷µo®g¹qºÏªi¡C
¦æ¶i¹qºÏªiªº«n¯S¼x
1. E¡BB ¦U¦Û««ª½©ó¦æ¶i¤è¦V
2. E¡BB ¤¬¬Û««ª½
3. E × B §Y¬Oªi¦æ¶iªº¤è¦V
4. ³õÁ`¬O¨Ì¥¿©¶«¬¦¡¦b§ïÅÜ
E = Em sin(kx - ωt)
B = Bm sin(kx - ωt)
ªi³t
c = 1 / √(μ0ε0)
E / B = c
¤@Ó³ÌÃø¥H²z¸Ñªºªi
¹qºÏªi¨Ã¨S¦³¡]¤£»Ýn¡^¶Ç¼½ªº´C¤¶¡A¥ú³t¦b©Ò¦³®y¼Ð¨t¤¤³£¤§¤@¼ËªºÈ¡C¥¦»P®É¶¡¤@°_¡A¬O®ÉªÅ¶¡µ²ºcªº¤@³¡¤À¡C
¦æ¶i¹qºÏªiªºªº©w¶q¤ÀªR
¹q³õ»PºÏ³õÌÂù«·PÀ³¥i´£¨Ñ§ÚÌ¥ú¡C
±À¾É Em / Bm = c
¦b dx ªº¶ZÂ÷¤§¨âºÝ¡A¹q³õ¬° E »P E + dE¡A¨ú h §@ªø¦Ó»P dx ªº¼e§Î¦¨ªº±¿nùØ¡A°Q½×¸Ó±¿n°j¸ô¤¤ªº·PÀ³ºÏ³õ¡A§Q¥Îªk©Ô²Ä©w«ß
∫CL E · ds = − dΦB / dt
∫CL E · ds = ( E + dE ) h - E h = h dE
ΦB = ( B ) ( h dx )¡A¬G
dΦB / dt = h dx dB/dt
¥N¤Jªk©Ô²Ä©w«ß¡A±o
h dE = - h dx dB/dt
§Y dE / dx = -dB / dt
¨Æ¹ê¤W¡AE¡BB ¬Ò¬°®É¶¡»PªÅ¶¡ªº¨ç¼Æ¡A¤W¦¡À³§@
∂E / ∂x = -∂B / ∂t
§Ú̧â E = Em sin(kx - ωt) ¤Î B = Bm sin(kx - ωt) ·í§@¬O¤vª¾¡A«h¦³
∂E / ∂x = k Em cos(kx - ωt)
∂B / ∂t = - ωBm cos(kx - ωt)
¬G¦³
k Em cos(kx - ωt) = ωBm cos(kx - ωt)
k Em = ωBm
§Ú̪¾¹D¦æ¶iªiªºªi³t¡]¬Û³t«×¡^¬O ω/ k ¡A¬G
Em / Bm = ω/ k = c
±À¾É c = 1 / √(μ0ε0)
¨£½Ò¤å
¹Ï 33-7
°Q½× dx ½d³ò¨â°¼ªººÏ³õÈ B »P B + dB¡A§Q¥ÎºÏ³õÀô¸ô¿n¤À»P¹q³q¶qÅܤÆÃö«Yªº ¦w°ö¡Ð°¨§J´µ«Âº¸·PÀ³©w«ß
∫CL B · ds = ε0 μ0 dΦE / dt
∫CL B · ds = - (B + dB) h + B h = -h dB
½Ðª`·N¥Ñ©ó°j¸ô¤è¦Vªº³]©w¡A¤W¦¡ªº²Ä¤@¶µ¬Otªº
ΦE = ( E ) (h dx)
¹ï¤W¦¡·L¤À
dΦE / dt = h dx (dE / dt)
¥t¥~ª`·N ¤W¦¡¹ï®É¶¡·L¤À¤£·|§@¥Î¨ì dx¡A¦]¬°³oùر´°Qªº¨ç¼Æ¬O³õ¡A¹ï³õ¦Ó¨¥ x ¥u¬OªÅ¶¡ªº»R¥x¦ÛÅܼơA¤£¹³¬O²É¤lªºy¸ñ¨ç¼Æ x(t) ¨º¼Ë¡C
¥þ³¡¥N¤J¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß¡A±o
-h dB = ε0 μ0 h dx (dE / dt)
-∂B / ∂x = ε0 μ0 ∂E / ∂t
²{¦b¥N¤J B¡BE ªº¦æ¶iªiªº¥¿©¶¨ç¼Æ
- k Bm cos(kx - ωt) = -ε0 μ0 ωEm cos(kx - ωt)
k Bm = ε0 μ0 ωEm
Em / Bm = 1/ ( ε0 μ0 (ω/k) ) = (1/ ε0μ0 ) (1/ ( ω/ k ) ) = 1/ ε0μ0 c
¥Ñ«e±¤vª¾ªº Em / Bm = c¡A«h±o
c = 1 / √ ε0μ0
¡]±q³oùاA¥i¥H¬Ý¨ì¡A¥ú³t´NÂæb°¨§J´µ«Âº¸¤èµ{¦¡²ÕùØ¡C¥ú³tªº´ú¶q¡A¥i¥H¤À§O°µ¹q®e¤Î¹q·P¹êÅç¨Ó¶q¨ì¡C¡^
¯à¶q¶Ç¿é»Pªi¦L«F¦V¶q
S = 1 / μ0 E × B
S = 1 / μ0 E B
¦]¬° E / B = c
S = 1/(cμ0) E2
¥H¤W¬OÀþ¶¡ªº¯à¶q¬y²v
I = Savg = 1/(cμ0) [ E2 ]avg = 1/(cμ0) [ Em2 sin2(kx - ωt) ]avg
Erms = Em / √2
I = 1/(cμ0) Erms2
°Ý¡A³oùر¹q³õ¦û¤j³¡¤À¶Ü¡H
¥Ñ¹q³õªº¯à¶q±K«×¥Xµo®i¶}
uE = 1/2 ε0 E2 = 1/2 ε0 (cB)2 = 1/2 ε0 c2 B2 = 1/(2μ0) B2 = uB
«ê¦nµ¥©óºÏ³õ¯à¶q±K¡C¦]¦¹¡A³oùرªº¹q³õ¯à¶q±K«×»PºÏ³õ¯à¶q±K«×¬O¤@¼Ë¤jªº¡C
±j«×ÀHµÛ¶ZÂ÷¦Ó§ïÅÜ
¤@Ó¯u¹êªº¹qºÏ´T®g·½¡A¨ä±j«×ÀH¶ZÂ÷ªºÅܤƬO½ÆÂ÷ªº
°ò©ó¯à¶q¦u«í¡A¦Ò¼{¬°ÂI¥ú·½
±j«× = ¥\²v / ±¿n = Ps / 4 π r2
¥ú¤§´T®gÀ£
¥ú¤£¦ý¦³¯à¶q¡A¤]¦³°Ê¶q¡C
§¹¥þ§l¦¬©Ò³y¦¨ªº°Ê¶q§ïÅÜ
Δp = ΔU / c
ªuì¸ô®|©Ò³y¦¨ªº°Ê¶q§ïÅÜ
Δp = 2 ΔU / c
Y¬O³¡¤À§l¦¬³¡¤À¤Ï®g¡A«h°Ê¶q§ïÅܤ¶©ó¤W¨âªÌ¤§¶¡¡C
¥Ñ¤û¹y©w«ß¡A°Ê¶qÅܤƻP¤O¤§¶¡ªºÃö«Y¬°
F = Δp / Δt
¥t¥~¡A¬°ªíµy«án¥H´T®g±j«× I ¨Óªí¥Ü´T®gÀ£¡A½Ðª`·N±j«×¬O
±j«× = ¥\²v¡þ±¿n = ¡]¯à¶q¡þ®É¶¡¡^¡þ±¿n
¬G¦³
ΔU = I A Δt
«h¡A¹ï§¹¥þ§l¦¬
F = Δp / Δt = ΔU / ( c Δt ) = I A Δt / ( c Δt ) = I A / c
¹ï§¹¥þ¤Ï®g
F = Δp / Δt = 2 ΔU / ( c Δt ) = 2 I A Δt / ( c Δt ) = 2 I A / c
«h´T®gÀ£¡A¹ï§¹¥þ§l¦¬¬°
pr = I / c
¹ï§¹¥þ¤Ï®g
pr = 2 I / c
´T®gÀ£ª±¨ã Radiometer
°¾®¶
¹q³õ¬O¦b¤@Ó¥±¤W®¶Àú¡A¨£¹Ï 33-9
°¾®¶¥ú
¹qµø»Oµo¥Xªº¹qºÏªi¦³¯S©w°¾®¶¤è¦V¡A¤@¯ë¥ú·½©Î¤é¥ú«h¬OÀH¾÷°¾®¶¡A¤]¥s«D°¾®¶
¥iÂǥѳq¹L°¾®¶¤ù¦Ó§â«D°¾®¶¥úÅܦ¨³¡¤À©Î§¹¥þ°¾®¶¥ú¡A¦¹¦]°¾®¶¤ù¤W¦³±Æ¦C¾ã²z¦p²p·¾ªºªøÃì¤À¤l¡C
¬ï³z¤§°¾®¶¥úªº±j«×
I = I0 / 2
¹ï¤v°¾®¶ªº¥ú¦Ó¨¥¡AY θ ¬°»P°¾®¶¤ù¤¹³\¹q³õ³q¹L¤è¦V¤§§¨¨¤
Ey = E cosθ
I = I0 cos2θ
¨£ ¨ÒÃD 33-2 ¤§¹Ï
°¾¥ú¤ùªº¥Í¬¡À³¥Î
3D ¹q¼v
³¨³½¡B¶}¨®¥Î¤Ó¶§²´Ãè
³z¹L½wºC±ÛÂ઺°¾¥ú¤ù¨Ó¬Ý®Ñ¥»¦L¨êªo¾¥©Òµo¥X¨Óªº¬¯¥ú¡]±Ð«Ç²{³õ¦Û»s¼v¤ù¡AÂIÀ»¤U¹Ï§Y¥i¼·©ñ¡^
±Û¥ú©Ê»P¿}«×ÀË´ú
¿}¤À¤l¦³±Û©Ê¡]¦p¥ª¥k¤â¦³Ãè¹³©ÊºÙ¡A¦ý¥ª¥k¤â«o¤£¤@¼Ë¡^
©µ¦ù¸É¥R¡G¤Ï®g»P§é®gªºì²z
¤O¾Ç¬Oª«²z¾Çªº®Ö¤ß²z½×¡Aª«²zªº©w«ß´yzª«²z¶q¤§¶¡ªºÃö«Y¡A¦Ó¤O¾Ç«h¸Õ¹Ï¨t²Î¤Æ¦a«Ø¥ß¦u«í¶q»P¦u«í«ß¡]¹ïºÙ©Ê¡^¡C¤O¾Çªºµ¦²¤n§ä±`¼Æ¡]¦u«í¶q¡^¡A¦p¯à¶q¡A°£¦¹¤§¥~¡A¤O¾Ç¤]«Ø¥ß¤@¨Ç¶q¡]¨Ò¦p§@¥Î¶q¡^¡A¦Ó¨º¨Ç¶qªº·¥È·|µ¹¥Xª«²z©w«ß¡C
¶Oº¿ªº³Ì³t¸ô®|ì²z
±q¤@ÂI¨ì¥t¤@ÂI¡A¥ú¨« δL = 0 ªº¸ô®|¡A¨ä¤¤ L ¬O§é®g²v¼¤W¸ô®|ªº©M¡C
±À¾É§é®g©w«ß
¹Ï«Ý´Ó¤JPauli Lecture of Physics Vol.2 Fig.1.2
L = n1 P1Q + n2 P2Q
L = n1 a1/cosθ1 + n2 a2/cosθ2
¤S¡A»²§U±ø¥ó
A1A2 = n1 a1tanθ1 + n2 a2tanθ2 = ±`¼Æ
§Q¥Î Lagrange multiplier ¤èªk
δL + λ δ(A1A2) = 0
δ( n1 a1/cosθ1 + n2 a2/cosθ2 ) + λ δ( n1 a1tanθ1 + n2 a2tanθ2) = 0
θ1 »P θ2 ¬°¿W¥ßªº¦ÛÅܼơA¨ÌÅܤÀªk즡¾ã²z¬°
a1 ( n1sinθ1/ cos2θ1 + λ 1/ cos2θ1) δθ1 + a2 ( n2 sinθ2/ cos2θ2 + λ 1/ cos2θ2 ) δθ2 = 0
«h δθ1 »P δθ2 ªº«Y¼Æ¦U¦Û¥²¶·¬°¹s¡A§Y
n1 sinθ1 + λ = 0 ¡A¥B
n2 sinθ2 + λ = 0
®ø°£¤W¨â¦¡¤§ λ¡A«h
n1 sinθ1 = n2 sinθ2
±oÃÒ¡C
±À¾É¤Ï®g©w«ß
¨£¹Ï Fig. 1.3
§Q¥Î»²§U½u¡A³]©w P ÂIªºÃè¹³ P* ÂI¡]§¹¥þ¨S¦³¼vÅTµ²ªG¡A³o¥u¬OÅý§ÚÌ®e©ö¬Ý¹Ï¡^¡A«h§ÚÌ°ò©ó¤T¨¤§Î¨âÃä©M¤§ªø¤j©ó²Ä¤TÃä¡G
P0Q' + Q'P* > P0Q + QP*
°ò©ó¦¹Ãö«Y¡A¥ú¾Ç¸ô®|¦]¦¹¬O·¥¤pȪº PQ ¦A P0Q ¡A¤]´N¬O
θ0 = θ
±oÃÒ¡C
¤Ï®g
¨£¹Ï 33-15
¤Ï®g©w«ß
θ'1 = θ1
³z©ú¤¶½è¤¤ªº¹qºÏªi¡]§é®g¡^
§é®g©w«ß¡]´µ¯I¦Õ©w«ß¡^
n1 sinθ1 = n2 sinθ2
¦â´²
§é®g²v»Pªiªø¦³Ãö
¨£¹Ï 33-17¡B18¡B19
±mi
¨£¹Ï 33-20
¥þ¤Ï®g
±q±K¤¶½è¨ì²¨¤¶½èªº§é®g¡A¦³¥i¯àµo¦Ü¤@Ó±¡ªp¡A§Y¥X®g¨¤«×µ¥©ó 90 «×
n1 sinθ1 = n2 sin 90°
Æp¥Û
¥úÅÖ
¥Ñ¤Ï®g²£¥Í¤§°¾®¶
¸g¥Ñ¤ô±©Î¬Á¼þ¤Ï®g¥Xªº¥ú³q±`¬O³¡¤À°¾®¶©Î¤§§¹¥þ°¾®¶ªº¡C°¾®¶ªº¤è¦V¬O¥¦æ©ó¬É±¡C
¥¬¾|´µ¯S¨¤
¤J®g¡B¤Ï®g¡B§é®g©Òºc¦¨ªº¤§®íÃö«Y
º¥ý¡A¤J®g¨¤µ¥©ó¤Ï®g¨¤¡A¦Ó§é®g¨¤«h¨ú¨M©ó§é®g²v¡A¦pªG¤Ï®g½u»P§é®g½u§¨¨¤ 90 «×¡A«h¤Ï®g½u§¹¥þ¨S¦³¹q³õ««ª½©ó¬É±ªº¦¨¤À¡C
¦p¦ó²z¸Ñ³oÓ²{¶H¡H¬Ý¹Ï¡A««ª½°¾®¶ªº§é®g½u¨ä¹q³õ»P¤Ï®g½u¬O¥¦æªº¡A¥i¥H·Q¹³¦b¬É±¤WªºÃä¬É±ø¥ó¤£²Å¦X³sÄò©Ê¡C
θB + θr = 90°
¥Ñ§é®g©w«ß
n1 sinθB = n2 sinθr
¥N¤J¨ä©M¬° 90° ªº±ø¥ó
n1 sinθB = n2 sin( 90° - θB ) = n2 cosθB
§Y
θB = tan-1 n2 / n1
Y¤J®g¤Ï®g¨º¤@°¼¬OªÅ®ð¡A«h n1 ¥i·í§@ 1¡A¤W¦¡§Y¦¨¬° ¥¬¾|´µ¯S©w«ß
θB = tan-1 n
¨ÒÃD
33-2
33-5
µê³¡§é®g²v¡]§l¦¬¡^