®¶Àú¡G²¿Ó¹B°Ê¡Bªý¥§»P¦@®¶
²¿Ó¹B°Ê
²¿Ó¹B°Êªº©w¸q
x(t) = A0 sin(ωt + φ)
¨ä¤¤
A0 ¬O®¶´T
ω¬O¨¤ÀW²v¡A1/ (2 π ω) = T ¬O¶g´Á
φ¬O¬Û¦ì¨¤
½Æ¼Æªºªí¥Üªk¤]«Ü±`¨£
x(t) = A0 ei(ωt + φ)
¨ä¤¤ eiθ = cos(θ) + i sin(θ)
ei(ωt + φ) = cos(ωt + φ) + i sin(ωt + φ)
²¿Ó¹B°Êªºy¸ñ
¤@ºû±¡ªp
¨âÓ¿W¥ß SHG ¹Ï§Î¤§²Õ¦X¡G§õ¨F¨|¹Ï§Î
Ax, Ay, ωx, ωy, δx, δy ¬Ò¤£¦P
²¿Ó®¶Àúªº¹B°Ê¤èµ{¦¡
¹ï®É¶¡·L¤À¨â¦¸
·L¤À¤èµ{¦¡¡]¹B°Ê¤èµ{¦¡¡^
d2 x(t) /dt2 = - k/m x(t)
¤]´N¬O»¡¡A¸j¦b¡]½è¶q¥i²¤¤£p¤§¡^¼u®¤W ªºª«Å骺¹B°Ê¦æ¬°¡A¨ä¤¤ ω = √(k/M)
¦ì¯à
U = (1/2) ω x2
²¿Ó¹B°Ê¤§«n©Ê
¥ô¦ó¦^´_¤O¦ì¶Õ¦b±µªñ¥¿ÅÂI³B³£¬O©ßª«½u§Î¡A¤]´N¬O¤@¦¸¤è¤O¡C¡]¼Æ¾Ç¤W¥iÃÒ©ú¨ç¦b·¥È³B¥Ñ©ó±×²v¬°¹s¡A®õ°Ç®i¶}¥Ñ¥¤è¶µ¶}©l¡A¬G¦³¤Wz©Ê½è¡C¡^½Æ²ß¡G®õ°Ç®i¶}¦¡¡C
¦h½èÂI¨t²Î¤§ªº®¶Àúªº°ò¥»¼Ò¦¡¡]Normal Mode¡^
ºû°ò¦Ê¬ì http://en.wikipedia.org/wiki/Normal_mode
C2H6 ¤À¤l¤§ normal modes ªº¨ä¤¤¤TºØ
´XºØ±`¨£ªºÂ²¿Ó¹B°Ê¸Ë¸m
¼u®
§áÂ\
Fig 15-7
τ = - κ θ
²³æÄÁÂ\¡]³æÂ\¡^
¯u¹ê¡]ª«²z¡^Â\
¤]¦³Â½Ä¶§@½ÆÂ\
¶g´Á¬O (15-29) ¦¡
¥i§Q¥Î½ÆÂ\¨Óºë±K¶q´ú g È
g ȬO (15-31) ¦¡¡]³æÂ\¤½¦¡ùتº g ®ø±¼©Ò¥H¤£¯à¨D g¡^
§¡¤Ã¡]µ¥³t¡^¶ê©P¹B°Êªº§ë¼v
ªý¥§
ªý¤O
¬O¤@ºØ®ø¯Ó¤O¾Ç¯à¡]¾÷±ñ¯à¡^ªº¹Lµ{¡A»P³t«×¦³Ãö¡A¨Ò¦p¤U¹Ï¸Ë¸m
Fd = - b v
¥N¤J Fnet = m a¡A±o
- b v - k x = m a
¨üªý¥§Â²¿Ó¹B°Ê¤èµ{¦¡ªº¸Ñ
¸Ñ·L¤À¤èµ{¦¡
-bv - k x = ma
m d2 x/dt2 + b dx/dt + kx = 0
³q¸Ñ¬°
x(t) = A0 e -bt/2m cos(ω't + φ)
¦³·sªº¨¤ÀW²v
ω' = ( k/m - b2/4m )(1/2)
¦Ó«nªº¬OÀH®É¶¡«ü¼Æ°I´îªº¦]¤l¡An®M¦b®¶´T¤W
e -bt/2m A0cos(ω't + φ)
±N³y¦¨ under damping, over damping, critical damping µ¥²{¶H
¥H under dampling §Y b < √(km) ¬°¨Ò
¼ÆȪº¹q¸£¼ÒÀÀ
¤]¥i¥H«Ü¤è«K¦a¥Î¹q¸£¼ÒÀÀ¥X¨Ó
¬I¤O®¶Àú »P ¦@®¶
¬I¤O®¶Àú (forcaed oscillation)
¦³¥~¤Oªº
Àþ¶¡¥~¤O
¥Î½Ä¶q³B²z¡A´«¦¨ªì³t«×
¶g´Á¥~¤O
·íÅX°Ê¤OÀW²v ωd µ¥©ó®¶Àú¨t²Îªº¦ÛµMÀW²v ω ®É¡A®¶´T·|¶V¨Ó¶V¤j¡Cª½¨ì³Qªý¥§©è®ø¦Ó¹F¨ì³Ì¤jÈ¡C
ÀH¾÷¥~¤O