ªi°Ê¥ú¾Ç

 

¤z¯A²{¶H

 

ªi°Êªº¥ú

´f§ó´µ¬O³Ì¦­¥ý´£¥X¥i¥O¤H«HªA¤§¥úªºªi°Ê²z½×ªº¤H (1678) ¡AÁö¤£¦p°¨§J´µ«Âº¸¤èµ{¦¡¨Ó±o§¹¾ã¡A¦ý«o¥i¥Î²³æªº§@ªk»¡©ú¤Ï®g¡B§é®g²{¶H¡A¥H¤ÎÄÄ©ú§é®g²vªºª«²z·N¸q¡C¦]¦¹­È±o§Ú­Ì¨Ó¤F¸Ñ¤@¤U¡C

´f§ó´µ­ì²z

ªi«e¤Wªº¨C¤@ÂI§¡¥iµø¬°²y­±¤lªiªºÂI·½ªi¡A¸g¹L¤@¬q®É¶¡ t ¤§«á¡Aªi«eªº·s¦ì¸m±N¬°³o¨Ç¤lªiªº¤Á­±¦ì¸m¡C

¥Ñ¤W¹Ï¥i¨£¡Aªi«eªºªk¦V¶qºû«ù¤£ÅÜ¡A¦]¦¹ªiªº¤è¦V«ùÄò¦V«e¡A¬G¥i»¡©ú¥ú¬Oª½½u¶i¦æ¡C

 

§é®g©w«ß

¤£¦P¤¶½è¤¤¥ú³t¤£¦P¡A¦ý¥¦­Ì¬O¨Ó¦Û¦P¤@¹D¥ú¦]¦¹ÀW²v¬Û¦P¡A¦p¦¹«hªiªø¤£¦P¡A¦³¥H¤UÃö«Y

v1 / v2 = λ1 / λ2

¤W¹Ï¤¤¤§ ¤T¨¤§Î ªº ¨¤ ceh »P ¨¤ hgc ¬Oª½¨¤¡]¦]¬°¦æ¶i¤è¦V»Pªi«e««ª½¡^

sinθ1 = λ1 / hc

sinθ2 = λ2 / hc

¨â¦¡¬Û°£¨Ã¥H³t²v¥N´«´Àªiªø

sinθ1 / sinθ2 = λ1 / λ2 = v1 / v2

 

²{¦b§Ú­Ì¥i¥H¥Ñ¥ú³t¦b¯uªÅ»P¤¶½è¤¤ªº¤£¦P¨Ó©w¸q¸Ó¤¶½èªº§é®g²v¡G

n = c / v

¨ä¤¤ v ¬O¤¶½è¤¤ªº¥ú³t¡C

¹ï©ó¨âºØ¤¶½è¡An1 = c / v1¡B n2 = c / v2¡A¥Ñ«e­±ªºµ²ªG

sinθ1 / sinθ2 = v1 / v2 = n1/ n2

§Y ¡]¥q¯I¦Õ¡^§é®g©w«ß

n1sinθ1 = n2 sinθ2

±oÃÒ¡C

 

¥t¤@¾Éªk ( °ò¥»¤W¬Û¦P )

¦P¤@ªi«e±À¶i¡A©Ò»Ý®É¶¡¬Û¦P

λ1 / v1 = λ2 / v2 

=>  λ1 / λ2 = v1 /  v2 

sinθ1 = λ1 / x

sinθ2 = λ2 / x

=>   sinθ1 / sinθ2 = λ1 / λ2 = v1 /  v2 = ( c / n1) / ( c / n2 )  = n2  / n1

=> n1sinθ1 = n2 sinθ2

 

¦p¦ó¦b°¨§J´µ«Âº¸¤èµ{¦¡¤¤¬Ý¨ì´f§ó´µ­ì²z¡H

 

ªiªø»P§é®g²v

²{¦b¤§¬Ý¥ú½u±q¤@­Ó¤¶½è¶i¤J¥t¤@­Ó¡A¦ñÀH¥ú³t¤§§ïÅÜ©Ò³y¦¨ªºªiªøÅܤƱ¡§Î¡C¦]¬°¥ú³t»P¤¶½è¦³Ãö¡A¦]¦¹ªi©w»P¤¶½è¦³Ãö¡C°²³]¬Y³æ¦â¥ú¦b¯uªÅ¤¤¦³ªiªø λ »P¥ú³t c¡A ¦b¤¶½è¤¤«h¦³ªiªø λn »P¥ú³t v¡A¸Ó¤¶½è§é®g²v¬O n¡A«h«e­±®Ú¾Ú´f§ó´µ­ì²z ±o¨ìªº v1 / v2 = λ1 / λ2¡A§Ú­Ì¦³

λn = λ v / c

¨ä¤¤±N§é®g²v n = c / v ¥Î¤W¡A«h

λn = λ / n

³o»¡©ú¤F¦P¤@¹D¥ú¡A¦b¤¶½è¤¤ªº³t«×¤£¤@¼Ë¡Bªiªø´N¤£¤@¼Ë¡C

¦Ü©óÀW²v¡A«h¬O¬Û¦P¡]¨£¤U¡^¡A³o¬O²`´Ó¦b´f§ó´µ­ì²z¤¤¡C

fn = vn / λn = ( c / n ) / (λ / n ) = c / λ= f

 

¤z¯A

«Ø³]©Ê »P ¯}Ãa©Ê

ª½±µ±Nªi¨ç¼Æ¡]ªi¤§®É¶¡¡BªÅ¶¡ªºÅܤÆÃö«Y¡^¬Û¥[§Y¥i¡]­«Å|­ì²z¡^

superposition principle of waves

 

±m­i»P¤z¯A

 

妨g

"­n·Ç³Æ¤z¯A²{¶H¡A­n¥ý¤F¸Ñªi¤§Â¶®gªº°ò¥»¯S©Ê"¡]why ?¡^

"¬°¤F·Ç³Æ¤z¯A²{¶Hªº°Q½×¡A­n¥ý¤¶²Ðªi¤§Â¶®gªºÆ[©À"¡A«á­±·|¦A½Í¨ì§ó¦h¡C¨£¤ôªi¹êÅç¹Ï¡A¥H¤Î¤J®gªi¹Ï¸Ñ¡A¤Õ¬}­Y°÷¤p»Pªiªø¬Ûªñ¡A³q¹L¤§ªi·|¦V¥~´²¶}¡A³o´N¥s¶®g¡C

¡@¡@¡@

 

·¨¤ó¤z¯A¹êÅç

²Ä¤@­ÓÃÒ©ú¥ú¬Oªiªº¹êÅç

³o­Ó¹êÅçÅý§Ú­Ì¬Ý¨ì«G·t¯¾

±ø¯¾ªº¦ì¸m

ΔL = d sinθ

¹Ï (H 35-7B, 34.9)

d sinθ= m λ ¡]«G¯¾¡^

d sinθ= (m + 1/2) λ ¡]·t±a¡^

 

¦P½Õ©Ê

­n¬Ý¨ì¤z¯A±ø¯¾¡A«h¨ì¹F¹õ¤W¥ô¤@ÂIªº¥úªi³£­n¦³ "¤£ÀH®É¶¡Åܤƪº¬Û¦ì®t"¡C·¨¤ó¤z¯A¹êÅ礤 S1 »P S2 ¥X¨Óªº¥ú "§¹¥þ¦P½Õ" ¡A¥¦­Ì¨Ó¦Û³q¹L S0 ªº³æ¤@­Óªi¡C

¶§¥ú¬O³¡¤À¦P½Õ¡A¬O»¡¶§¥ú¥u¦³¦bºI­±¤W¾aªñªº¨â­ÓÂI¤~¦³©T©wªº¬Û¦ì®t¡C

Åý¥ú³q¹L¯UÁ_¡A¤~¯à²£¥Í¦P½Õ¥ú¡A¨Ã¥B¥Ñ©ó¯UÁ_¤p¡A¤]¤~§¡¤Ã¶®g¨ì¨â­Ó¯UÁ_¤W¡A¦Ó§Q©ó¤z¯A¹êÅç¡C

­Y¥Î¨â­Ó¿W¥ß¥ú·½¡A¦p¨â¥Õ¼ö¿O¡A«h¨S¦³¦P½Õ©Ê¡]½Ò¤å»¡¬Û¦ìªºÅܤƧ֨체·ú¬Ý¤£¥X¨Ó¤z¯A¡^¡C

 

Âù¯UÁ_¤z¯Aªº±j«×

«e­±ªº d sinθ= m λ©Î (m + 1/2) λ µ¹ªº¬O·¥¤j»P·¥¤pªº¦ì¸m¡A¦b¦¹«h­nµ¹¥X±j«×ÀH¨¤«×ªº¤À§G¡G

I = 4 I0 cos2(φ/2)

¨ä¤¤

φ= 2πd/λ sinθ

¥Ñ³o¨â¦¡¡A¤ÀªR³Ì¤j«G«×»P³Ì¤p«G«×­nµo¥Í¦b¤°»ò¦ì¸m¨¤«×¡A«h¥i±o¦^ d sinθ ¤½¦¡¡C

 

¤W¨â¦¡ 35-22, 35-23 ¤§ÃÒ©ú

§Q¥Î phasor ¤èªk³B²z

E1 = E0 sin(ωt)

E2 = E0 sin(ωt + φ)

phasor ¦X¦¨

E = 2 ( E0 cos β )

¨ä¤¤ β= φ /2 ¡]µ¥¸y¤T¨¤§Î¨â¤º¨¤©Mµ¥©ó²Ä¤T¨¤¤§¥~¨¤¡^

I ∝E2 = 4 E02 cos2 φ /2

I / I0 =E2 / E02

I = 4 I0 cos2 φ /2

±oÃÒ

¹Ï 35-7b

¬Û¦ì®t = (2 π/λ) ¸ô®|®t

¬G

φ= (2π/λ) ΔL = 2πd/λ sinθ

±oÃÒ

 

¨â­Ó¥H¤Wªºªi¦X¦¨

(1) µe¥X¤@²Õ¬Û¶q¡]phasor¡^¨Ó¥Nªí¥N¥[¨ç¼Æ¡A±N³o¨Ç¬Û¶q«O«ù¬Û¦ìÃö«YÀY§À¬Û±µ

(2) ¥Î¤@¦V¶q³s°_¤W­z¬Û¶q©Mªº§À¨ìÀY¡C¦¹¦V¶q©Mªºªø«×¬°¦X¦¨¤§®¶´T¡A»P²Ä¤@¬Û¶q¤§§¨¨¤¬°»P²Ä¤@¬Û¶q¤§¬Û¦ì®t¡C¦V¶q¦bÁa¶b¤Wªº§ë¼v«h¬O¦X¦¨ªi¹ï®É¶¡ªºÅܤơC

¨ÒÃD 35-4

Á¡½¤¤z¯A

¦Ò¼{´X¥G««ª½¡B«p«×«Ü¤p

¤Ï®g¤§¬Û¦ì°¾²¾

case 1 ²Ê÷ ¨ì ²Ó÷

case 2 ²Ó÷ ¨ì ²Ê÷

­«²y ¼² »´²y v.s. »´²y ¼² ­«²y

 

 

Á¡½¤¤z¯A¤èµ{¦¡

(m + 1/2) λair / n = 2t       ¡@(m ∈ Z )¡]«Ø³]©Ê¡^

 

 

¨ÒÃD 34.1 Ãè­±Áὤ

 

¤z¯A²{¶H

Á¡½¤«p«×»·¤p©ó λ

½ºÁl»P¯È¶rªºÅܦâ²{¶H

 

 

ÁÚ¥i´Ë¤z¯A»ö

¶ZÂ÷ (ªºÅܤÆ) ¥i¥H¥Î¥úªi§@ºë½Tªº´ú¶q

1/4 λªºªø«×ÅܤơA´N¥i¥H±ø¯¾¥Ñ«GÂà·t¡C

¡]¥H¤Ó¤£¦s¦b¡A¥v¤W "³Ì¦¨¥\ªº¥¢±Ñ¹êÅç"¡^

 

 

 

 

¶®g²{¶H

 

¶®g»P¥úªºªi°Ê²z½×

«e³¹¦b¤¶²Ð·¨¤óÂù¯UÁ_¤z¯Aªº®É­Ô¦³´£¨ì¡A³æ¯UÁ_®³¨Ó§@¬°Àò±o§¹¥þ¦P½Õ¥ú·½ªº¥ú¡Cªiªø»P¯UÁ_¬Û·íªº¥úªi¡A¦b³q¹L¯UÁ_«á¡A¥H²y§Îªi¤è¦¡´²¶}¡A¥D­nÁÙ¥u¦b°Q½×¥ú½uÂ÷¶}¯UÁ_¨S¦h¤[«áªºªi«e·§ªp¡C

¸É¥R

¥»³¹­n¤ñ¸û§¹¾ã¦a±´°Q¡A°Q½×¶®gªi¦b¶Ç¼½¤ñ¸û»·¤§«á¡A¦]ªi°Ê©Ê½è©Ò¯à³y¦¨ªº±j«×ÅܤƤΨ䤣¦PªºÀ³¥Î­±¬Û¡C

 

¥±·ç©`«GÂI

ªk°ê¬ì¾Ç°|¤º¥ú²É¤l¬£¤ä«ùªÌªº¿n·¥¿ì¬¡°Ê¡A»P¶®g¦³Ãöªº½×¤åªº¦³¼ú¼x¤å¡C

©¬ªQ´£¥X¡A¦pªG¥±·ç©`¤§²z½×¥¿½T¡A±N·|¦³¥ú½u¶i¤J²yÅé³±¼v¦Ó¦b¤¤¤ß¦³¤@«GÂIªº "©_²§µ²ªG"¡A

 

 

³æ¯UÁ_¶®g¡G§ä¥X·¥¤pªº¦ì¸m

§Q¥Î²³æ¦Ó¥©§®ªº¤èªk¡A§â¾ã­Ó³æ¯UÁ_¬Ý¦¨°¸¼Æ­Ó²Õªºµ¥¼e³q¹D¡A¦p¹Ï¡C

¹ï©ó»·³B«Ì¹õªº¤@ÂI¡A¦pªG¬Û¾F³q¹Dªº²Ä¤@¹D¥ú¸ô®|ª½½u¦¨¹ï³y¦¨¯}Ãa©Ê¤z¯A¡A«h¥i·Q¹³¥­²¾¥ô¤@¤p¬qªº¦¨¹ï¥ú¸ô®|¥þ³¡³£©è®ø¡A¬G¬°¤@·tÂI¡C

a / 2 sinθ = λ/ 2

§Y¡A

a sinθ = λ

¥H¤W¬O²Ä¤@·¥¤p¡]·t¯¾¡^¥X²{ªº¨¤«×

 

¦P²z¡A²Ä¤G·¥¤p¥i¤À¦¨¥|¬q¡A

a / 4 sinθ = λ/ 2

§Y¡A

a sinθ = 2λ

¥H¤W¬O²Ä¤G·¥¤p¡]·t¯¾¡^¥X²{ªº¨¤«×

¥H¦¹Ãþ±À

a sinθ = m λ

m = 1, 2, 3 . . .

¡]¬°¤°»ò¤£¯à¥Î©_¼Æ¤À¬q¡H¦]¬°·|°t¤£§¹¡A¤@©w­n°¸¼Æ¬q¡C¡^

 

³æ¯UÁ_¶®g±j«×ªº©w©Ê¤ÀªR

¬Û¦ì®t = (2 π / λ) ¥úµ{®t

Δφ = (2 π / λ) sinθ

¦A§Q¥Î phasor ¤èªk¬Û¥[

´XºØ¥i¯àªº±¡ªp¦p¹Ï 36-6

 

³æ¯UÁ_¶®g±j«×ªº©w¶q¤ÀªR

±j«×¡]«G«×¡^»P¨¤«×ªºÃö«Y¬O

I(θ) = Im ( sinα/α)2

¨ä¤¤

α = 1/2 φ = (πa / λ ) sinθ

¨Ì±j«×¤½¦¡¥h¤ÀªR¡Aªº½T·|¾É­P¦³·t¯¾µo¥Í¦b

a sinθ = m λ¡Am = 1, 2, 3 . . .

 

¤W¨â¦¡¡]36-5 ¦¡ ¤Î 36--6 ¦¡¡^¤§ÃÒ©ú

¥H Δx §@¥²·L¤À¬q¡A¥Î phasor ¤èªk²Ö¥[¦U¥ú§ô¤£¦P¬Û¦ì®t¤§°^Äm¡C

¨£¹Ï 36-8

¬Û¦ì®t phi ¦b¦¹´X¦ó¤¤¦³¥H¤UÃö«Y

sin (φ/2 ) = Eθ /2R

±N¹Ï¤¤ Em ¦Ò¼{¦¨©·§Î¡A¥i¥H±N©·«×ªí¥Ü¦¨

φ = Em / R

±N R ¥N¤J¤W¤W¦¡¡A«h¦³

sin (φ/2 ) = Eθ / 2R = Eθ φ / 2 Em

¦]¬°±j«×»P¹q³õ¥­¤è§e¥¿¤ñ

I(θ) / Im = Eθ2 / Em2 = [ sin (φ/2 ) / (φ/ 2 ) ]2

¬G

I(θ) = Im [ sin (φ/2 ) / (φ/ 2 ) ]2 = Im ( sinα / α )2

±oÃÒ¡C

¦A¨Ó¡A­n§ä α »P θ ¤§¶¡ªºÃö«Y¡A§Q¥Î¬Û¦ì®t»P¥úµ{®t¤§¶¡ªºÃö«Y

φ = (2 π / λ) a sinθ

¬G

α = φ/2 = ( πa / λ) sinθ

±oÃÒ¡C

 

 

¶ê¤Õ¶®g

sinθ = 1.22 λ / d

¦^¾Ð³æ¯UÁ_¶®gªº²Ä¤@·¥¤p¦ì¸m

sinθ = λ / d

¦³Ãþ¦ü¤§³B¡A¨ä¤¤ 1.22 ¬O¶ê¤Õ§Îª¬©Ò³y¦¨ªº¡C

 

Ų§O²v

³zÃ覨¹³¬O¶®g¹Ï¼Ëªº¨Æ¹ê¡A«P¨Ï§Ú­Ì¥²¶·¬ã¨sª«»P¹³¹ïÀ³ªº°ÝÃD¡A¤]´N¬OŲ§O²v°ÝÃD¡C

Ų§O²v»P¨¤«×ªºÃö«Y

¨âÂI¥ú·½ªºÂ¶®gµ²ªG¡A¦pªG±µªñ¨ì¨ä¤¤¤@­Óªº¤¤¥¡·¥¤j¸¨¦b¥t¤@­Óªº²Ä¤@·¥¤p¤W¡A«h»{©w¬°¶}©l¤£¯à¤À¿ë¡A

θR = sin-1(1.22λ/ d)

¤p¨¤«×®É¡A¬° sinθ »P ¨¤«× θ ¥iªñ¦ü¬°¤@¼Ë

θR = 1.22λ/ d

½Ðª`·N«e¨â¦¡±o¨ìªºθR ¨Ã¤£¬O¨âª«Å鶡¶Z³y¦¨ªº¨¤«×¡C¹ê»ÚÆ[¹î®Éªºµø¨¤ θ ÁÙ­n¸ò θR ¨Ó¤ñ¡C

³oùتº d ¬O¥ú¾Ç¨t²Î¤¤¡]³Ì¤p¡^ªº¤Õ®|¤j¤p

³o­Óµø¨¤«×¡A¨Ó¦Û D / L ªº¤ÀªR¡A¨ä¤¤

 

§Q¥Î³zÃè¨ÓŲ§O¤p¨¤«×¶¡¹j¤§ª«Åé¡A¥²¶·¨Ï¶®g®ÄÀ³¾¨¶q´î¤p¡C¥Ñ¥»¸`¥»°Q½×¡A¼W¥[³zÃ誽®|©Î´î¤pªiªø¬Ò¥i¹F¨ì¦¹¥Øªº¡C¡]¬Û¾÷¶V¦n¡BÃèÀY¶V¤j¡FÂÅ¥ú DVD °O¿ý±K«×¤ñ¹L¥hªº¬õ¥ú°ª¡C¡^

 

Âù¯UÁ_¶®g

«e³¹¦³Á¿¹LÂù¯UÁ_¤z¯A¡A³oùاó¶i¤@¨B½ÍÂù¯UÁ_¶®g¡C

¨£¹Ï

¬Û·í©ó¬O¤@­Ó³æ¯UÁ_¶®g»P¤@­ÓÂù¯UÁ_¤z¯A­¼¦b¤@°_¡A

I(θ) = Im (cos2β) (sinα / α)2

¨ä¤¤

β= ( πd / λ) sinθ

α = ( πa / λ) sinθ

¡]µL­­»·¥ú·½Â¶®g¬O¬Û·í©ó´I§Q¸­Âà´«¡Aªøª«¥ó±oµu±ø¯¾¡Fµuª«¥ó±oªø±ø¯¾¡C¡^

 

¶®g¥ú¬]

 

«G½uµo¥Í¦b¡A¨£¹Ï

d sinθ = m λ

m = 1, 2, 3, . . .

 

¨äµ²ªG¦p¤U¥Ü·N¹Ï

 

 

½u¼e¡]³o»P¥ú¬]¤À¥úªº¸ÑªR«×¦³Ãö¡A¶V²Ó¸ÑªR¤O¶V±j¡^

²Ä¤@·¥¤p¦b

N d cosΔθhw = λ

¤¤¥¡½u¥b¼e«×

Δθhw = λ/ N d

¡]¤£ÃÒ©ú¡Aª½±µµ¹¡^

¦bθ ³B¤§½uªº¥b¼e«×

Δθhw = λ / ( N d cosθ )

 

 

¥ú¬]¤À¥ú»ö

 

 

 

¥ú¾Ç¥iÅܹÏ

¥þ¹³¤ù´¿§@®³¨¾°°¡A¦ý®ÄªG¤£¦n¡C(1) ªñ¬Ý¤~²M·¡¡A(2) ©ö¥é¡]¹êª«©ç·Ó¡^

«Ü¦h¥d§ï¥Î OVG¡A¨C­Ó³¡¤À³£¦³¤£¦Pªº¥ú¬]¡A¬Ý±o²M·¡¡A¤S«ÜÃø¤Ï±À¥h¨M©w¥ú¬]±ø¯¾ªº²Ó¸`¡C

 

 

¥ú¬]¡G¦â´²»P²rŲ§O«×

¦â´²«×

D : = Δθ / Δ λ

D = m / (d cosθ )

 

Ų§O²v

R : = λavg / Δ λ

R = N m

 

36-30 ¦¡ªºÃÒ©ú

 

36-32 ¦¡ªºÃÒ©ú

 

¦â´²«×»PŲ§O²vªº¤ñ¸û

 

 

²Õ´¤Æ¼hª¬µ²ºcªºÂ¶®g

X-®g½u¶®g

1912 ¦~¼w°ê¬ì¾Ç®a Max von Laue ·Q¨ì¡A´¹Åé»qªº­ì¤l¤]¥i¥H§êºt¶®g¥ú¬]ªº¨¤¦â¡A¨Ó¹ï X-®g½u²£¥Í¶®g¡C

·|²£¥Í«Ø³]©Ê¤z¯Aªº¤ÀªR¡A¨£¹Ï¡G

¡]¦b§@¹Ï¤WÁöµM¥H¦³­ì¤lºc¦¨ªºµêÀÀ¥­­±¨Ó§@¬°¤Ï®g X-®g½u¡A¹³¬O³B²zÁ¡½¤¤z¯Aªº¨º¼Ë¡A¦ýµ²ªG¬O¤´¬O¹ïªº¡^

³o­ÓµêÀÀªº¥­­±¡A¥u¦³¬Y¨Ç¦a¤è¦³­ì¤l¡A³o­Ó¸ò¦b¤£¦P­±¤WÀH«K¨ú¤@¨Ç­ì¤l®³¥X¨Ó°µÂ¶®gªº±´°Q¡]«hµ²ªG¤@©w·|¤£¦P¡^¡A¦³¤°»ò¤£¤@¼Ë¡H¦b§Ú­Ì©w¥Xªº­±¡AÁöµM¤£¬O­±ªº³B³B³£¦³­ì¤l¡A«h¥t¤@­Ó­±¤]¨S¦³¦b¥¿¤U¤è¦³­ì¤l¡A¦ý¬O¦³«Ü­«­nªº¤@ÂI¡A´N¬O­±¤Wªº­ì¤l±Æ¦C¦³³W«ß©Ê¡B¶g´Á©Ê¡A¨Ã¥B©w¥X¨Óªº­±¤§¶¡¤]¦³·|­«ÂЪº¶g´Á©Ê¡C

2 d sinθ = m λ ¡]Bragg's Law¡^

¨ä¤¤ m = 1, 2, ....

³oùتº¤ÀªR³B²z¤è¦¡¡AºÙ¬° kinematics ²z½×¡A³o¬O¤@ºØ¤u¨ã©Êªº²z½×¡A¥H¤ñ¸û²¤Æªºªñ¦ü¤èªk°Q½×¡C¥t¦³ dynamics ²z½×¡A¦³¸û§¹¾ãªº²z½×±À¾É¡C¤@­Ó¤ñ¸û§¹¾ãªºªº­pºâ¤èªk¡A¬O§â¾ã­Ó´¹Åé§@´I§Q¸­Âà´«¡A¦Ó¥Ñ©ó´I§Q¸­Âà´«¬O½u©Êªº¡A¦]¦¹¤@¼h¤@¼h¥i¥H©î¶}¨Ó³B²z¡A¦Ü©ó¹ï³æ¤@¼hªº´²®g¡A«h¨Ì´f§ó´µ­ì²zªº±´°Q¡A¤Ï®g¨¤µ¥©ó¤J®g¨¤¡C

Àò±o¥i¥H¤F¸Ñ­ì¤l¦p¦ó¦b´¹Å餤±Æ¦Cªº¤u¨ã¡A¤£¦ý¶}±Ò¤F©TºA»P§÷®Æª«²zªº¬ã¨s¡A¤]«P¦¨¤F DNA ±K½Xªº¸Ñ¥X¡A¹ï©óª«½è¬ì§Þ»P¥Í©R¬ì§Þªºµo®i¦³ÃöÁä©Êªº°^Äm¡C

 

¶®g¤Þµoªºµ²ºc©ÊÅã¦â

¨£¹Ï 36-28

 

 

¦ÛµM¬É³Ì«GªºªG¹ê

http://www.cam.ac.uk/research/news/african-fruit-brightest-thing-in-nature-but-does-not-use-pigment-to-create-its-extraordinary-colour/

 

 

¨ÒÃD

36-3

36-4