°¨§J´µ«Âº¸¤èµ{¦¡ »P¹qºÏªi

 

°¨§J´µ«Âº¸¤èµ{¦¡

 

ºÏ³õªº°ª´µ©w«ß

ºÏ³æ·¥¡]¥Ø«e©Òª¾¡^¨Ã¤£¦s¦b

ΦB = ∫CS B · dA = 0

¤ñ¸û¹q³õªº°ª´µ©w«ß

ΦE = ∫CS E · dA = qenc / ε0

ºÏ§é¦¨´X¬q¡A¨C¤@¬q³£Åܦ¨ºÏÅK¡A¦U¦Û¦³ N¡BS ·¥¡A¦p¹Ï 32-2

°Q½×ÃD¡G©Ò¥H¡A¥´Â_ªººÏÅK¡AÀ³¸Ó¦Û¤w¥i¥H§l¦b¤@°_¦Ó«O«ù­ì¨Óªº§Îª¬¡A¹ï¶Ü¡H

 

·PÀ³²£¥ÍªººÏ³õ (Induced Magnetic Fields)

ªk©Ô²Ä·PÀ³©w«ß¬O "ºÏÅܥ͹q"

CL E · ds = - dΦB / dt

¦Ó°¨§J´µ«Âº¸·PÀ³©w«ß«h¬O "¹qÅܥͺÏ"

CL B· ds = μ0ε0E / dt

¹êÅçÃÒ©úªº½T¦p¦¹¡C

³oºØ·PÀ³ªº¤@­Ó¯S®í¨Ò¤l¬O¥¿¦b¥R¹q¤¤ªº¹q®e¾¹

 

¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß

¦^¾Ð¦w°ö©w«ß

CL B · ds = μ0 ienc

¦Ó«e¤@¤p¸`ªº°¨§J´µ«Âº¸·PÀ³©w«ßµ¥¸¹¥ªÃä¡A¤]¥X²{¦P¼ËªººÏ³õÀô¸ô¿n¤À¡A§Ú­Ì¥i¥H¦X¨Ö³o¨â­Ó¤èµ{¦¡¡G

CL B · ds = μ0ε0E / dt + μ0 ienc

ºÙ¬° ¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß

 

¦ì²¾¹q¬y

³o¬O°¨§J´µ«Âº¸³Ì«á²Î¦X¥|±ø¤@²Õ¤èµ{¦¡ªº³Ì«á¤@¶ô«÷¹Ï¡]¹F¦¨¤½¦¡ªº¬üÄR»P§¹¾ã¡^¡]¬°¤°»ò¡H¦]¬°¹q»PºÏªº¦a¦ì¹ïºÙ¡A¤]¦]¬°ªi°Ê¤èµ{¦¡¤~±À¾É±o¥X¨Ó¡A¨£¤U¡^¡C§Ú­Ì¬Ý¤W­±ªº ¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß¤§µ¥¸¹¥kÃ䪺¨â¶µ¡A¦Ó³]·Q¤@°²·Q¹q¬y¡A¦ì²¾¹q¬y

id = ε0E / dt

«h

CL B · ds = μ0 id,enc + μ0 ienc

¦p¦¹¡A´N³£¥i¥Î¹q¬y·½¨Ó²z¸ÑºÏÀô¸ô¡C

¦ì²¾¹q¬yªºª«²z·N¸q

Åܰʤ¤ªº¹q³õ¡A¥iµø¬°¹q®e¤Wªº¥R¹q¹q²ü¥¿¦bÅܤƼƶq¡]¦]¦¹¹q¤O½uªº¼Æ¥Ø¤]¤~·|Åܤơ^¡A¦Ó¯à³y¦¨¹q®e¥R¹qªº¡A¥¿¬O¹q¬y¡C¦¹¹q¬y¤£¬O¯u¦³¹q²ü¶Ç¿é¹L¥h¡A¦Ó¬O²Ö¿n¦b¹q®e¾¹¤Wªº¹q²ü¤ÀÂ÷¡A¦]¦¹¤~¥s¹q¦ì²¾¡C¬G³y¦¨Ãþ¦ü¹q®e¾¹¥R¹qªº¥R¹q®ÄÀ³ªº°²·Q¹q¬y¡A¥s¦ì²¾¹q¬y¡C

 

¨D·PÀ³ºÏ³õ

¹ï¥b®| R¡A¥¿¦b¥R¹qªº¥­ªO¹q®e¡A§Ú­Ì¥i¥Î id ¨Ó¨D·PÀ³ºÏ³õªº¤j¤p¡A¹q®e¤§¤º¶Z¤¤¤ß¬° r ªºÂI¨äºÏ³õ¤j¤p¬°¡A

B = (μ0 id / 2πR2) r

¦b¹q®e¾¹¥~«h¬O

B = μ0 id / 2πr

 

°¨§J´µ«Âº¸¤èµ{¦¡¡]²Õ¡^

¦b¨S¦³¤¶¹q½è©ÎºÏ©Ê½è¦s¦bªº±¡ªp¤U¡A¥|±ø¤èµ{¦¡¾ã²z¦p ªí 32-1 ¡G

°ª´µ©w«ß
ºÏ¾Ç°ª´µ©w«ß
ªk©Ô²Ä·PÀ³©w«ß
¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß

 

°¨§J´µ«Âº¸¤èµ{¦¡¡]²Õ¡^¤]¦³·L¤À«¬¦¡

³o¥|­Ó¤@²Õªº¤èµ{¦¡´y­z©Ò¦³¥¨Æ[ªººÏ¡B¹q¡B¥ú²{¶H¡A¬Æ¦Ü¥úªº³t«×¤]Âæb¨ä¤¤¡C©T©wªº¥ú³t­ÈÁÙ¤Þµo¤Fªñ¥Nª«²zªº·s­²©R¡C

³z¹L·L¤À«¬ Maxwell's Equations ªº±À¾É¾ã²z¡A¥i±oª¾¹q³õ»PºÏ³õ¦U¦Û»Ýº¡¨¬¡]¯S¼x¬O¦P®É¨ã¦³¹ïªÅ¶¡¨â¦¸·L¤À»P¹ï®É¶¡¨â¦¸·L¤Àªº¡^ªi°Ê¤èµ{¦¡ ¡G

±À¾É¤è¦¡¦p¤U¡G

 

¹qºÏªi

 

°¨§J´µ«Âº¸ªº±m­i

°¨§J´µ«Âº¸ªº­«¤j¦¨´N¬OÃÒ©ú¤F¥ú´N¬O¹q³õ»PºÏ³õ©Ò§Î¦¨ªº¹qºÏªi¡C

 

¦æ¶i¹qºÏªiªºªº©w©Ê¤ÀªR

²£¥Í¦æ¶i¹qºÏªiªº¸Ë¸m

¨£¹Ï 33-3¡A¤@­Ó RLC ¹q¸ô¨Ã°t¦X¤Ñ½u¡A´N¯à°÷µo®g¹qºÏªi¡C

 

¦æ¶i¹qºÏªiªº­«­n¯S¼x

1. E¡BB ¦U¦Û««ª½©ó¦æ¶i¤è¦V

2. E¡BB ¤¬¬Û««ª½

3. E × B §Y¬Oªi¦æ¶iªº¤è¦V

4. ³õÁ`¬O¨Ì¥¿©¶«¬¦¡¦b§ïÅÜ

 

E = Em sin(kx - ωt)

B = Bm sin(kx - ωt)

ªi³t

c = 1 / √(μ0ε0)

E / B = c

 

¤@­Ó³ÌÃø¥H²z¸Ñªºªi

¹qºÏªi¨Ã¨S¦³¡]¤£»Ý­n¡^¶Ç¼½ªº´C¤¶¡A¥ú³t¦b©Ò¦³®y¼Ð¨t¤¤³£¤§¤@¼Ëªº­È¡C¥¦»P®É¶¡¤@°_¡A¬O®ÉªÅ¶¡µ²ºcªº¤@³¡¤À¡C

 

¦æ¶i¹qºÏªiªºªº©w¶q¤ÀªR

¹q³õ»PºÏ³õ­ÌÂù­«·PÀ³¥i´£¨Ñ§Ú­Ì¥ú¡C

±À¾É Em / Bm = c

¦b dx ªº¶ZÂ÷¤§¨âºÝ¡A¹q³õ¬° E »P E + dE¡A¨ú h §@ªø¦Ó»P dx ªº¼e§Î¦¨ªº­±¿nùØ¡A°Q½×¸Ó­±¿n°j¸ô¤¤ªº·PÀ³ºÏ³õ¡A§Q¥Îªk©Ô²Ä©w«ß

CL E · ds = − dΦB / dt

CL E · ds = ( E + dE ) h - E h = h dE

ΦB = ( B ) ( h dx )¡A¬G

B / dt = h dx dB/dt

¥N¤Jªk©Ô²Ä©w«ß¡A±o

h dE = - h dx dB/dt

§Y dE / dx = -dB / dt

¨Æ¹ê¤W¡AE¡BB ¬Ò¬°®É¶¡»PªÅ¶¡ªº¨ç¼Æ¡A¤W¦¡À³§@

∂E / ∂x = -∂B / ∂t

§Ú­Ì§â E = Em sin(kx - ωt) ¤Î B = Bm sin(kx - ωt) ·í§@¬O¤vª¾¡A«h¦³

∂E / ∂x = k Em cos(kx - ωt)

∂B / ∂t = - ωBm cos(kx - ωt)

¬G¦³

k Em cos(kx - ωt) = ωBm cos(kx - ωt)

k Em = ωBm

§Ú­Ìª¾¹D¦æ¶iªiªºªi³t¡]¬Û³t«×¡^¬O ω/ k ¡A¬G

Em / Bm = ω/ k = c

 

±À¾É c = 1 / √(μ0ε0)

¨£½Ò¤å

¹Ï 33-7

°Q½× dx ½d³ò¨â°¼ªººÏ³õ­È B »P B + dB¡A§Q¥ÎºÏ³õÀô¸ô¿n¤À»P¹q³q¶qÅܤÆÃö«Yªº ¦w°ö¡Ð°¨§J´µ«Âº¸·PÀ³©w«ß

CL B · ds = ε0 μ0E / dt

CL B · ds = - (B + dB) h + B h = -h dB

½Ðª`·N¥Ñ©ó°j¸ô¤è¦Vªº³]©w¡A¤W¦¡ªº²Ä¤@¶µ¬O­tªº

ΦE = ( E ) (h dx)

¹ï¤W¦¡·L¤À

E / dt = h dx (dE / dt)

¥t¥~ª`·N ¤W¦¡¹ï®É¶¡·L¤À¤£·|§@¥Î¨ì dx¡A¦]¬°³oùر´°Qªº¨ç¼Æ¬O³õ¡A¹ï³õ¦Ó¨¥ x ¥u¬OªÅ¶¡ªº»R¥x¦ÛÅܼơA¤£¹³¬O²É¤lªº­y¸ñ¨ç¼Æ x(t) ¨º¼Ë¡C

¥þ³¡¥N¤J¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß¡A±o

-h dB = ε0 μ0 h dx (dE / dt)

-∂B / ∂x = ε0 μ0 ∂E / ∂t

²{¦b¥N¤J B¡BE ªº¦æ¶iªiªº¥¿©¶¨ç¼Æ

- k Bm cos(kx - ωt) = -ε0 μ0 ωEm cos(kx - ωt)

k Bm = ε0 μ0 ωEm

Em / Bm = 1/ ( ε0 μ0 (ω/k) ) = (1/ ε0μ0 ) (1/ ( ω/ k ) ) = 1/ ε0μ0 c

¥Ñ«e­±¤vª¾ªº Em / Bm = c¡A«h±o

c = 1 / √ ε0μ0

¡]±q³oùاA¥i¥H¬Ý¨ì¡A¥ú³t´NÂæb°¨§J´µ«Âº¸¤èµ{¦¡²ÕùØ¡C¥ú³tªº´ú¶q¡A¥i¥H¤À§O°µ¹q®e¤Î¹q·P¹êÅç¨Ó¶q¨ì¡C¡^

 

¯à¶q¶Ç¿é»Pªi¦L«F¦V¶q

S = 1 / μ0 E × B

S = 1 / μ0 E B

¦]¬° E / B = c

S = 1/(cμ0) E2

¥H¤W¬OÀþ¶¡ªº¯à¶q¬y²v

I = Savg = 1/(cμ0) [ E2 ]avg = 1/(cμ0) [ Em2 sin2(kx - ωt) ]avg

Erms = Em / √2

I = 1/(cμ0) Erms2

°Ý¡A³oùØ­±¹q³õ¦û¤j³¡¤À¶Ü¡H

¥Ñ¹q³õªº¯à¶q±K«×¥Xµo®i¶}

uE = 1/2 ε0 E2 = 1/2 ε0 (cB)2 = 1/2 ε0 c2 B2 = 1/(2μ0) B2 = uB

«ê¦nµ¥©óºÏ³õ¯à¶q±K¡C¦]¦¹¡A³oùØ­±ªº¹q³õ¯à¶q±K«×»PºÏ³õ¯à¶q±K«×¬O¤@¼Ë¤jªº¡C

 

±j«×ÀHµÛ¶ZÂ÷¦Ó§ïÅÜ

¤@­Ó¯u¹êªº¹qºÏ´T®g·½¡A¨ä±j«×ÀH¶ZÂ÷ªºÅܤƬO½ÆÂ÷ªº

°ò©ó¯à¶q¦u«í¡A¦Ò¼{¬°ÂI¥ú·½

±j«× = ¥\²v / ­±¿n = Ps / 4 π r2

 

¥ú¤§´T®gÀ£

¥ú¤£¦ý¦³¯à¶q¡A¤]¦³°Ê¶q¡C¡]¨S½è¶qªºªF¦è¤]¥i¥H¦³¦³°Ê¶q¡H¦b¬Û¹ï½×¥Ó·|¦A»¡©ú¡C¡^

§¹¥þ§l¦¬©Ò³y¦¨ªº°Ê¶q§ïÅÜ

Δp = ΔU / c

ªu­ì¸ô®|©Ò³y¦¨ªº°Ê¶q§ïÅÜ

Δp = 2 ΔU / c

­Y¬O³¡¤À§l¦¬³¡¤À¤Ï®g¡A«h°Ê¶q§ïÅܤ¶©ó¤W¨âªÌ¤§¶¡¡C

¥Ñ¤û¹y©w«ß¡A°Ê¶qÅܤƻP¤O¤§¶¡ªºÃö«Y¬°

F = Δp / Δt

¥t¥~¡A¬°ªíµy«á­n¥H´T®g±j«× I ¨Óªí¥Ü´T®gÀ£¡A½Ðª`·N±j«×¬O

±j«× = ¥\²v¡þ­±¿n = ¡]¯à¶q¡þ®É¶¡¡^¡þ­±¿n

¬G¦³

ΔU = I A Δt

«h¡A¹ï§¹¥þ§l¦¬

F = Δp / Δt = ΔU / ( c Δt ) = I A Δt / ( c Δt ) = I A / c

¹ï§¹¥þ¤Ï®g

F = Δp / Δt = 2 ΔU / ( c Δt ) = 2 I A Δt / ( c Δt ) = 2 I A / c

«h´T®gÀ£¡A¹ï§¹¥þ§l¦¬¬°

pr = I / c

¹ï§¹¥þ¤Ï®g

pr = 2 I / c

 

´T®gÀ£ª±¨ã Radiometer

http://www.youtube.com/watch?v=MbdPgc7e0R0&feature=related

 

ªiªø»Pªý¹jªºÃö«Y

·LªiÄlªºªùªº¥\¯à¡C

 

°¾®¶

¹q³õ¬O¦b¤@­Ó¥­­±¤W®¶Àú¡A¨£¹Ï 33-9

 

°¾®¶¥ú

¹qµø»Oµo¥Xªº¹qºÏªi¦³¯S©w°¾®¶¤è¦V¡A¤@¯ë¥ú·½©Î¤é¥ú«h¬OÀH¾÷°¾®¶¡A¤]¥s«D°¾®¶

¥iÂǥѳq¹L°¾®¶¤ù¦Ó§â«D°¾®¶¥úÅܦ¨³¡¤À©Î§¹¥þ°¾®¶¥ú¡A¦¹¦]°¾®¶¤ù¤W¦³±Æ¦C¾ã²z¦p²p·¾ªºªøÃì¤À¤l¡C

 

¬ï³z¤§°¾®¶¥úªº±j«×

I = I0 / 2

¹ï¤v°¾®¶ªº¥ú¦Ó¨¥¡A­Y θ ¬°»P°¾®¶¤ù¤¹³\¹q³õ³q¹L¤è¦V¤§§¨¨¤

Ey = E cosθ

I = I0 cos2θ

¨£ ¨ÒÃD 33-2 ¤§¹Ï

 

 

°¾¥ú¤ùªº¥Í¬¡À³¥Î

3D ¹q¼v

 

³¨³½¡B¶}¨®¥Î¤Ó¶§²´Ãè

 

³z¹L½wºC±ÛÂ઺°¾¥ú¤ù¨Ó¬Ý®Ñ¥»¦L¨êªo¾¥©Òµo¥X¨Óªº¬¯¥ú¡]±Ð«Ç²{³õ¦Û»s¼v¤ù¡AÂIÀ»¤U¹Ï§Y¥i¼·©ñ¡^

 

±Û¥ú©Ê»P¿}«×ÀË´ú

¿}¤À¤l¦³±Û©Ê¡]¦p¥ª¥k¤â¦³Ãè¹³©ÊºÙ¡A¦ý¥ª¥k¤â«o¤£¤@¼Ë¡^

¹qºÏ´T®g¶Ë®`¡H

http://tepca.blogspot.tw/2010/08/blog-post.html