°¨§J´µ«Âº¸¤èµ{¦¡ »P¹qºÏªi
°¨§J´µ«Âº¸¤èµ{¦¡
ºÏ³õªº°ª´µ©w«ß
ºÏ³æ·¥¡]¥Ø«e©Òª¾¡^¨Ã¤£¦s¦b
ΦB = ∫CS B · dA = 0
¤ñ¸û¹q³õªº°ª´µ©w«ß
ΦE = ∫CS E · dA = qenc / ε0
ºÏ§é¦¨´X¬q¡A¨C¤@¬q³£Åܦ¨ºÏÅK¡A¦U¦Û¦³ N¡BS ·¥¡A¦p¹Ï 32-2
°Q½×ÃD¡G©Ò¥H¡A¥´Â_ªººÏÅK¡AÀ³¸Ó¦Û¤w¥i¥H§l¦b¤@°_¦Ó«O«ùì¨Óªº§Îª¬¡A¹ï¶Ü¡H
·PÀ³²£¥ÍªººÏ³õ (Induced Magnetic Fields)
ªk©Ô²Ä·PÀ³©w«ß¬O "ºÏÅܥ͹q"
∫CL E · ds = - dΦB / dt
¦Ó°¨§J´µ«Âº¸·PÀ³©w«ß«h¬O "¹qÅܥͺÏ"
∫CL B· ds = μ0ε0 dΦE / dt
¹êÅçÃÒ©úªº½T¦p¦¹¡C
³oºØ·PÀ³ªº¤@Ó¯S®í¨Ò¤l¬O¥¿¦b¥R¹q¤¤ªº¹q®e¾¹
¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß
¦^¾Ð¦w°ö©w«ß
∫CL B · ds = μ0 ienc
¦Ó«e¤@¤p¸`ªº°¨§J´µ«Âº¸·PÀ³©w«ßµ¥¸¹¥ªÃä¡A¤]¥X²{¦P¼ËªººÏ³õÀô¸ô¿n¤À¡A§ÚÌ¥i¥H¦X¨Ö³o¨âÓ¤èµ{¦¡¡G
∫CL B · ds = μ0ε0 dΦE / dt + μ0 ienc
ºÙ¬° ¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß
¦ì²¾¹q¬y
³o¬O°¨§J´µ«Âº¸³Ì«á²Î¦X¥|±ø¤@²Õ¤èµ{¦¡ªº³Ì«á¤@¶ô«÷¹Ï¡]¹F¦¨¤½¦¡ªº¬üÄR»P§¹¾ã¡^¡]¬°¤°»ò¡H¦]¬°¹q»PºÏªº¦a¦ì¹ïºÙ¡A¤]¦]¬°ªi°Ê¤èµ{¦¡¤~±À¾É±o¥X¨Ó¡A¨£¤U¡^¡C§Ú̬ݤW±ªº ¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß¤§µ¥¸¹¥kÃ䪺¨â¶µ¡A¦Ó³]·Q¤@°²·Q¹q¬y¡A¦ì²¾¹q¬y
id = ε0 dΦE / dt
«h
∫CL B · ds = μ0 id,enc + μ0 ienc
¦p¦¹¡A´N³£¥i¥Î¹q¬y·½¨Ó²z¸ÑºÏÀô¸ô¡C
¦ì²¾¹q¬yªºª«²z·N¸q
Åܰʤ¤ªº¹q³õ¡A¥iµø¬°¹q®e¤Wªº¥R¹q¹q²ü¥¿¦bÅܤƼƶq¡]¦]¦¹¹q¤O½uªº¼Æ¥Ø¤]¤~·|Åܤơ^¡A¦Ó¯à³y¦¨¹q®e¥R¹qªº¡A¥¿¬O¹q¬y¡C¦¹¹q¬y¤£¬O¯u¦³¹q²ü¶Ç¿é¹L¥h¡A¦Ó¬O²Ö¿n¦b¹q®e¾¹¤Wªº¹q²ü¤ÀÂ÷¡A¦]¦¹¤~¥s¹q¦ì²¾¡C¬G³y¦¨Ãþ¦ü¹q®e¾¹¥R¹qªº¥R¹q®ÄÀ³ªº°²·Q¹q¬y¡A¥s¦ì²¾¹q¬y¡C
¨D·PÀ³ºÏ³õ
¹ï¥b®| R¡A¥¿¦b¥R¹qªº¥ªO¹q®e¡A§ÚÌ¥i¥Î id ¨Ó¨D·PÀ³ºÏ³õªº¤j¤p¡A¹q®e¤§¤º¶Z¤¤¤ß¬° r ªºÂI¨äºÏ³õ¤j¤p¬°¡A
B = (μ0 id / 2πR2) r
¦b¹q®e¾¹¥~«h¬O
B = μ0 id / 2πr
°¨§J´µ«Âº¸¤èµ{¦¡¡]²Õ¡^
¦b¨S¦³¤¶¹q½è©ÎºÏ©Ê½è¦s¦bªº±¡ªp¤U¡A¥|±ø¤èµ{¦¡¾ã²z¦p ªí 32-1 ¡G
°ª´µ©w«ß
ºÏ¾Ç°ª´µ©w«ß
ªk©Ô²Ä·PÀ³©w«ß
¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß
°¨§J´µ«Âº¸¤èµ{¦¡¡]²Õ¡^¤]¦³·L¤À«¬¦¡
³o¥|Ó¤@²Õªº¤èµ{¦¡´yz©Ò¦³¥¨Æ[ªººÏ¡B¹q¡B¥ú²{¶H¡A¬Æ¦Ü¥úªº³t«×¤]Âæb¨ä¤¤¡C©T©wªº¥ú³tÈÁÙ¤Þµo¤Fªñ¥Nª«²zªº·s²©R¡C
³z¹L·L¤À«¬ Maxwell's Equations ªº±À¾É¾ã²z¡A¥i±oª¾¹q³õ»PºÏ³õ¦U¦Û»Ýº¡¨¬¡]¯S¼x¬O¦P®É¨ã¦³¹ïªÅ¶¡¨â¦¸·L¤À»P¹ï®É¶¡¨â¦¸·L¤Àªº¡^ªi°Ê¤èµ{¦¡ ¡G
±À¾É¤è¦¡¦p¤U¡G
¹qºÏªi
°¨§J´µ«Âº¸ªº±mi
°¨§J´µ«Âº¸ªº«¤j¦¨´N¬OÃÒ©ú¤F¥ú´N¬O¹q³õ»PºÏ³õ©Ò§Î¦¨ªº¹qºÏªi¡C
¦æ¶i¹qºÏªiªºªº©w©Ê¤ÀªR
²£¥Í¦æ¶i¹qºÏªiªº¸Ë¸m
¨£¹Ï 33-3¡A¤@Ó RLC ¹q¸ô¨Ã°t¦X¤Ñ½u¡A´N¯à°÷µo®g¹qºÏªi¡C
¦æ¶i¹qºÏªiªº«n¯S¼x
1. E¡BB ¦U¦Û««ª½©ó¦æ¶i¤è¦V
2. E¡BB ¤¬¬Û««ª½
3. E × B §Y¬Oªi¦æ¶iªº¤è¦V
4. ³õÁ`¬O¨Ì¥¿©¶«¬¦¡¦b§ïÅÜ
E = Em sin(kx - ωt)
B = Bm sin(kx - ωt)
ªi³t
c = 1 / √(μ0ε0)
E / B = c
¤@Ó³ÌÃø¥H²z¸Ñªºªi
¹qºÏªi¨Ã¨S¦³¡]¤£»Ýn¡^¶Ç¼½ªº´C¤¶¡A¥ú³t¦b©Ò¦³®y¼Ð¨t¤¤³£¤§¤@¼ËªºÈ¡C¥¦»P®É¶¡¤@°_¡A¬O®ÉªÅ¶¡µ²ºcªº¤@³¡¤À¡C
¦æ¶i¹qºÏªiªºªº©w¶q¤ÀªR
¹q³õ»PºÏ³õÌÂù«·PÀ³¥i´£¨Ñ§ÚÌ¥ú¡C
±À¾É Em / Bm = c
¦b dx ªº¶ZÂ÷¤§¨âºÝ¡A¹q³õ¬° E »P E + dE¡A¨ú h §@ªø¦Ó»P dx ªº¼e§Î¦¨ªº±¿nùØ¡A°Q½×¸Ó±¿n°j¸ô¤¤ªº·PÀ³ºÏ³õ¡A§Q¥Îªk©Ô²Ä©w«ß
∫CL E · ds = − dΦB / dt
∫CL E · ds = ( E + dE ) h - E h = h dE
ΦB = ( B ) ( h dx )¡A¬G
dΦB / dt = h dx dB/dt
¥N¤Jªk©Ô²Ä©w«ß¡A±o
h dE = - h dx dB/dt
§Y dE / dx = -dB / dt
¨Æ¹ê¤W¡AE¡BB ¬Ò¬°®É¶¡»PªÅ¶¡ªº¨ç¼Æ¡A¤W¦¡À³§@
∂E / ∂x = -∂B / ∂t
§Ú̧â E = Em sin(kx - ωt) ¤Î B = Bm sin(kx - ωt) ·í§@¬O¤vª¾¡A«h¦³
∂E / ∂x = k Em cos(kx - ωt)
∂B / ∂t = - ωBm cos(kx - ωt)
¬G¦³
k Em cos(kx - ωt) = ωBm cos(kx - ωt)
k Em = ωBm
§Ú̪¾¹D¦æ¶iªiªºªi³t¡]¬Û³t«×¡^¬O ω/ k ¡A¬G
Em / Bm = ω/ k = c
±À¾É c = 1 / √(μ0ε0)
¨£½Ò¤å
¹Ï 33-7
°Q½× dx ½d³ò¨â°¼ªººÏ³õÈ B »P B + dB¡A§Q¥ÎºÏ³õÀô¸ô¿n¤À»P¹q³q¶qÅܤÆÃö«Yªº ¦w°ö¡Ð°¨§J´µ«Âº¸·PÀ³©w«ß
∫CL B · ds = ε0 μ0 dΦE / dt
∫CL B · ds = - (B + dB) h + B h = -h dB
½Ðª`·N¥Ñ©ó°j¸ô¤è¦Vªº³]©w¡A¤W¦¡ªº²Ä¤@¶µ¬Otªº
ΦE = ( E ) (h dx)
¹ï¤W¦¡·L¤À
dΦE / dt = h dx (dE / dt)
¥t¥~ª`·N ¤W¦¡¹ï®É¶¡·L¤À¤£·|§@¥Î¨ì dx¡A¦]¬°³oùر´°Qªº¨ç¼Æ¬O³õ¡A¹ï³õ¦Ó¨¥ x ¥u¬OªÅ¶¡ªº»R¥x¦ÛÅܼơA¤£¹³¬O²É¤lªºy¸ñ¨ç¼Æ x(t) ¨º¼Ë¡C
¥þ³¡¥N¤J¦w°ö¡Ð°¨§J´µ«Âº¸©w«ß¡A±o
-h dB = ε0 μ0 h dx (dE / dt)
-∂B / ∂x = ε0 μ0 ∂E / ∂t
²{¦b¥N¤J B¡BE ªº¦æ¶iªiªº¥¿©¶¨ç¼Æ
- k Bm cos(kx - ωt) = -ε0 μ0 ωEm cos(kx - ωt)
k Bm = ε0 μ0 ωEm
Em / Bm = 1/ ( ε0 μ0 (ω/k) ) = (1/ ε0μ0 ) (1/ ( ω/ k ) ) = 1/ ε0μ0 c
¥Ñ«e±¤vª¾ªº Em / Bm = c¡A«h±o
c = 1 / √ ε0μ0
¡]±q³oùاA¥i¥H¬Ý¨ì¡A¥ú³t´NÂæb°¨§J´µ«Âº¸¤èµ{¦¡²ÕùØ¡C¥ú³tªº´ú¶q¡A¥i¥H¤À§O°µ¹q®e¤Î¹q·P¹êÅç¨Ó¶q¨ì¡C¡^
¯à¶q¶Ç¿é»Pªi¦L«F¦V¶q
S = 1 / μ0 E × B
S = 1 / μ0 E B
¦]¬° E / B = c
S = 1/(cμ0) E2
¥H¤W¬OÀþ¶¡ªº¯à¶q¬y²v
I = Savg = 1/(cμ0) [ E2 ]avg = 1/(cμ0) [ Em2 sin2(kx - ωt) ]avg
Erms = Em / √2
I = 1/(cμ0) Erms2
°Ý¡A³oùر¹q³õ¦û¤j³¡¤À¶Ü¡H
¥Ñ¹q³õªº¯à¶q±K«×¥Xµo®i¶}
uE = 1/2 ε0 E2 = 1/2 ε0 (cB)2 = 1/2 ε0 c2 B2 = 1/(2μ0) B2 = uB
«ê¦nµ¥©óºÏ³õ¯à¶q±K¡C¦]¦¹¡A³oùرªº¹q³õ¯à¶q±K«×»PºÏ³õ¯à¶q±K«×¬O¤@¼Ë¤jªº¡C
±j«×ÀHµÛ¶ZÂ÷¦Ó§ïÅÜ
¤@Ó¯u¹êªº¹qºÏ´T®g·½¡A¨ä±j«×ÀH¶ZÂ÷ªºÅܤƬO½ÆÂ÷ªº
°ò©ó¯à¶q¦u«í¡A¦Ò¼{¬°ÂI¥ú·½
±j«× = ¥\²v / ±¿n = Ps / 4 π r2
¥ú¤§´T®gÀ£
¥ú¤£¦ý¦³¯à¶q¡A¤]¦³°Ê¶q¡C¡]¨S½è¶qªºªF¦è¤]¥i¥H¦³¦³°Ê¶q¡H¦b¬Û¹ï½×¥Ó·|¦A»¡©ú¡C¡^
§¹¥þ§l¦¬©Ò³y¦¨ªº°Ê¶q§ïÅÜ
Δp = ΔU / c
ªuì¸ô®|©Ò³y¦¨ªº°Ê¶q§ïÅÜ
Δp = 2 ΔU / c
Y¬O³¡¤À§l¦¬³¡¤À¤Ï®g¡A«h°Ê¶q§ïÅܤ¶©ó¤W¨âªÌ¤§¶¡¡C
¥Ñ¤û¹y©w«ß¡A°Ê¶qÅܤƻP¤O¤§¶¡ªºÃö«Y¬°
F = Δp / Δt
¥t¥~¡A¬°ªíµy«án¥H´T®g±j«× I ¨Óªí¥Ü´T®gÀ£¡A½Ðª`·N±j«×¬O
±j«× = ¥\²v¡þ±¿n = ¡]¯à¶q¡þ®É¶¡¡^¡þ±¿n
¬G¦³
ΔU = I A Δt
«h¡A¹ï§¹¥þ§l¦¬
F = Δp / Δt = ΔU / ( c Δt ) = I A Δt / ( c Δt ) = I A / c
¹ï§¹¥þ¤Ï®g
F = Δp / Δt = 2 ΔU / ( c Δt ) = 2 I A Δt / ( c Δt ) = 2 I A / c
«h´T®gÀ£¡A¹ï§¹¥þ§l¦¬¬°
pr = I / c
¹ï§¹¥þ¤Ï®g
pr = 2 I / c
´T®gÀ£ª±¨ã Radiometer
ªiªø»Pªý¹jªºÃö«Y
·LªiÄlªºªùªº¥\¯à¡C
°¾®¶
¹q³õ¬O¦b¤@Ó¥±¤W®¶Àú¡A¨£¹Ï 33-9
°¾®¶¥ú
¹qµø»Oµo¥Xªº¹qºÏªi¦³¯S©w°¾®¶¤è¦V¡A¤@¯ë¥ú·½©Î¤é¥ú«h¬OÀH¾÷°¾®¶¡A¤]¥s«D°¾®¶
¥iÂǥѳq¹L°¾®¶¤ù¦Ó§â«D°¾®¶¥úÅܦ¨³¡¤À©Î§¹¥þ°¾®¶¥ú¡A¦¹¦]°¾®¶¤ù¤W¦³±Æ¦C¾ã²z¦p²p·¾ªºªøÃì¤À¤l¡C
¬ï³z¤§°¾®¶¥úªº±j«×
I = I0 / 2
¹ï¤v°¾®¶ªº¥ú¦Ó¨¥¡AY θ ¬°»P°¾®¶¤ù¤¹³\¹q³õ³q¹L¤è¦V¤§§¨¨¤
Ey = E cosθ
I = I0 cos2θ
¨£ ¨ÒÃD 33-2 ¤§¹Ï
°¾¥ú¤ùªº¥Í¬¡À³¥Î
3D ¹q¼v
³¨³½¡B¶}¨®¥Î¤Ó¶§²´Ãè
³z¹L½wºC±ÛÂ઺°¾¥ú¤ù¨Ó¬Ý®Ñ¥»¦L¨êªo¾¥©Òµo¥X¨Óªº¬¯¥ú¡]±Ð«Ç²{³õ¦Û»s¼v¤ù¡AÂIÀ»¤U¹Ï§Y¥i¼·©ñ¡^
±Û¥ú©Ê»P¿}«×ÀË´ú
¿}¤À¤l¦³±Û©Ê¡]¦p¥ª¥k¤â¦³Ãè¹³©ÊºÙ¡A¦ý¥ª¥k¤â«o¤£¤@¼Ë¡^
¹qºÏ´T®g¶Ë®`¡H
http://tepca.blogspot.tw/2010/08/blog-post.html