·L¿n¤À°ò¦ »P ª½½u¹B°Ê

 

¯¸¦b¥¨¤HªºªÓ¤W

­ô¥Õ¥§

¤Ó¶§¬°¤¤¤ß»¡

http://www.bud.org.tw/museum/s_star14.htm

 

¦÷§Q²¤

¤j±Ð°ó¤ºªº¦Q¿O

¤j¤p²y¨º­Ó¥ý¸¨¦a

http://www.bud.org.tw/museum/s_star12.htm

 

§J¤R°Çªº©w«ß

¦æ¬P¹B¦æ¦b¾ò¶ê­y¹D¤W

http://episte.math.ntu.edu.tw/people/p_kepler/index.html

 

¤û¹y»P¼C¾ô¤T¤@¾Ç°|

§@·~¡G¤û¹yªº¥Í¥­¤Î¨ÆÂݳø§i

 

¦ÛµM­õ¾Ç®aªºÀY»Î

¤T¤@¾Ç°|¹p®¦¹Ï®ÑÀ]ªº 4 ÀJ¹³

Devinity, Law, Physic (medicine), Mathematics ¡]picture-1, picture-2¡^

 

 

½è¶q»PºD©Ê

½è¶q»P­«¶qªº¤£¦P

¤@­Ó½è¶q¬O¤@¤½¤çªºª«Åé¡A¦b¦a²yªí­±¦³¤@¤½¤ç­«¡A¦ý¦b¤ë²yªí­±¦³ 1/6 ¤½¤ç­«¡C

«ä¦Ò°ÝµªÃD¡G

¤@¤½¤çªºÅK»P¤@¤½¤çªº´Öªá¨º­Ó­«¡H

¤@¤½¤ç­«ªºÅK»P¤@¤½¤ç­«ªº´Öªá¨º­Ó­«¡H

ÅK»P´Öªá¨º­Ó­«¡H

ÅK»P´Öªá¨º­Ó¤ñ­«¤j¡H

 

ºD©Ê

ºò«æ·Ù¨®¤H·|¦V«e½Ä¡C

¥ÎÂñ¤l¾î¥´Å|°_¨Óªº¤ì¶ô°ïªº©³³¡¡A¨Ï¨ä¤£­Ë¦ý¶V¨Ó¶V¸Gªºª±¨ã¡C

±q±×­±¤W·Æ¤U¨Óªº¿û¯]ºu«Ü»·ÁÙ¤£·|°±¡C

"¥´¤£­Ë¯ÎÂñ"

Slinky ¨«¼Ó±è


¼v¤ù¡Ghttp://www.youtube.com/watch?v=qLEyYNz2wtk
¼v¤ù¡Ghttp://www.youtube.com/watch?v=aIu0sQIUQHs&NR=1

 

½èÂI

¬°¤F±´°Q¤W¯à³æ¯Â¤Æ¡A¥B±q¸gÅç¤W¤]¥i¦æ¡A§Ú­Ì¥i¥H§â¦³½è¶qªºª«ÅéÂI§@¤@­Ó¨S¦³Åé¿nªºÂI¡A¥u¬O¤@­ÓÂI´N¨S¦³Âà°Êªº°ÝÃD¡C

¡]«á­±ªº³¹¸`·|¤¶²Ð½èÂI¨t²Î¡A¨Ã¤Þ¤J½è¤ßªºÆ[©À¡A©¡®É§Ú­Ì¥i¥H¸ÑÄÀ¬°¦ó§Ú­Ì¥i¥H¦w¥O¦a§@¦¹´î¤Æ¡A¨Ã¹ï©ó¦³«ù©w¥~«¬ªºª«Åé¡AÀH«á¤]±N·|±´°Q¨äÂà°Ê¬ÛÃöªº¦æ¬°¡A³£¤£·|±À½§Ú­Ì¦³®É§âª«Åé·í§@ªº¤@­ÓÂI©Ò¤ÀªRªº¬ÛÃöµ²ªG¡^

 

½è¶qªº¨Ó·½

·í¥Nª«²zªº±´¯Á¡G¡]§Q¥Î¤j«¬±j¤l¥[³t¾¹¡^§ä´M§Æ®æ´µ²É¤l

 

 

ª½½uªºµ¥³t¹B°Ê»PÅܳt¹B°Ê

¦ì¸m¡B®É¨è¡B¶ZÂ÷¡B³t«×

¦ì¸m»P¶ZÂ÷ªºÃö«Y

¶ZÂ÷»P®É¶¡¡B³t«×ªºÃö«Y

 

¼Ú°ò¨½¼wªº´X¦ó

ª½¤Ø»P¶ê³W¡A°t¦X¤W¤½²z¡]¤½³]¡^ªº´X¦ó

 

¦÷§Q²¤¡B¤û¹yªº®ÉªÅÆ[

 

ºD©Ê®y¼Ð¨t

 

 

·L¿n¤À

¦³¨S¦³·L¿n¤À®t¦b¨ºùØ

 

½Öµo©ú¤F·L¿n¤À¡]¤û¹y»PµÜ¥¬¥§¯Y¡^

 

·L¤À¬O±´°QÅܤƶqªº¼Æ¾Ç

¥»¨Ó¥s°µ¬y¼Æ

·L¤À­pºâ»Ý­n¤Þ¤J "µL½a¤p" ³o­Ó¶q

²{¥N¤ÀªR¾Ç¡]§Y·L¿n¤À¡B°ªµ¥·L¿n¤À¡Aµ¥¾Çªù¡^¨Ï¥Î

«D¼Ð·Ç¤ÀªR¾Ç©w¸q¤FµL­­¤p³o­Ó¶q¡A

 

·¥­­

lim x → a f(x) = b¡A¥Nªí¡G

∀ε> 0  , ∃ δ > 0 ∋ ∀| x - a | <δ , | f(x) - b | < ε

 

δ¡Bε½×ªkÅý§Ú­ÌÅÜÁo©ú

¤HÃþ¥»¯à»{ª¾¡AªF¦è¦³¤j¤p

"µL­­¤p"¡A¤£©ö¥¿½T«ä¦Ò±À²z

¦]¦¹¦³«Ü¦h»P·L¿n¤À¦³Ãöªº¸Þ½×

 

³sÄò

f(x) ¦b x0 ³sÄò¡A¥Nªí¡G

∀ε> 0  , ∃ δ > 0 ∋ ∀| x - x0 | <δ , | f(x) - f(x0) | < ε

¡]¹Ï§Î¤Wªº²z¸Ñ¡^

 

¾É¼Æ¡]¦±½uªº±×²v¡^

y'(x) ≡ dy/dx ≡ lim Δx → 0 [ f(x+Δx) - f(x) ] / Δx

 

¹ê§@§Þªk

®õ°Ç®i¶}¤½¦¡¤Î¨äÃÒ©ú

¸Ô¨£ ¦¹ ³sµ²

±q¹ê¥ÎªºÆ[ÂI¡A¤j®a­n°O±o¥H¤Uªº§Þ¥©¡G§Q¥Î®õ°Ç®i¶}¦¡®i¶}«Ý³B²zªº¨ç¼Æ¡]³q±`¬O f(x) ¡^¡AΔx ®i¶}¾ã²z·Ó§@¡A«Ý¾ã²z¨ì³Ì«á¡A¥O Δx ¬°¹s¨ú¤£§t Δx ªºµ²ªG¡C

¨Ò¦p¡AÃÒ©ú d xn /dx = n x n-1

 

¿n¤À

¦b¼Æ¾Ç¤W¡A"¿n¤À" §Y "¤Ï¾É¼Æ"¡C

 

·L¤À¤èµ{¦¡

¬O¤@­Ó¤èµ{¦¡¡]¦³µ¥¸¹¡A¦³¥¼ª¾¨ç¼Æ¡^¡A¦³¥¼ª¾¨ç¼Æ¤§¾É¼Æªº¤èµ{¦¡¡C

§Ú­Ì­n¯à°÷¸Ñ´X­Ó³Ì°ò¥»ªº·L¤À¤èµ{¦¡¡A¥]§t ¨ä³q¸Ñ·|¬O«ü¼Æ¨ç¼Æ¡B¤T¨¤¨ç¼ÆªÌ ¡C

 

 

¸ÑªR¨D¸Ñ·L¿n¤À°ÝÃD

±`¨£·L¤À¤½¦¡¡]¼ÐÂŦâªÌ¬°´¶ª«¼h¯Å·|¥Î¨ìªº¡^

¦h¶µ¦¡

d/dx xn = n xn-1

¤T¨¤¨ç¼Æ

d/dx sin(ax) = a cos(ax)

d/dx cos(ax) = -a sin(ax)

d/dx tan(ax) = a/[cos2(ax)]

d/dx cot(ax) = -a/[sin2(ax)]

«ü¼Æ¹ï¼Æ

d/dx eax = a eax

d/dx ln(ax) = 1/x

d/dx ax = ax ln a

µÜ¥¬¥§¯Y«ß

d/dx (fg) = (df/dx) g + f (dg/dx)

ÃìÂê«ß

dy/dx = (dy/du) (du/dx)

 

±`¨£¿n¤À¤½¦¡¡]¼ÐÂŦâªÌ¬°´¶ª«¼h¯Å·|¥Î¨ìªº¡^

¦h¶µ¦¡

∫ xn dx = [1/(n+1)] xn+1 + C

(for n=/= -1 )

∫ x-1 dx = ln |x| + C

∫ [1/(a2+x2)] dx = (1/a) tan-1(x/a) + C

∫ [1/√(a2 + x2)] dx = ln | x + √(a2 + x2) |  + C

∫ [1/√(a2 - x2)] dx =

 

¤T¨¤¨ç¼Æ

∫ sin(ax) dx = - (1/a) cos(ax) + C

∫ cos(ax) dx = (1/a) sin(ax) + C

«ü¼Æ

∫eax dx = (1/a) eax + C

¹ï¼Æ

int lnx = ?

 

ÅÜ´«ÅܼÆ

 

¤À³¡¿n¤À (Integration by parts)

∫ udv = uv - ∫ vdu

ºû°ò¦Ê¬ì¡Ghttp://en.wikipedia.org/wiki/Integration_by_parts

 

¨D¸Ñ·L¤À¤èµ{¦¡

¥H³q¸Ñ¥N¤J¦¡¤¤¡A¥Î±ø¥ó©w¥X«Ý©w±`¼Æ¡C

¼Æ­È¨D¸Ñ·L¿n¤À

¼Æ­È·L¤À

f'(xn) = (fn+1 - fn) / (xn+1 - xn)

 

¼Æ­È¿n¤À

fn+1 = fn + f'n Δx

¨ä¤¤ Δx = xn+1 - xn

 

¨ÒÃD¡B²ßÃD¡B§@·~ »P °Q½×

 

2-* µLªÅ®ðªý¤O®É¡A¦b¥­¦a¤W³Ì»·©ß®g¿n¨Ó¦Û 45 «×¥õ¨¤¡]ÃÒ©ú¸Ô¸Ñ¨£½Ò¥»¡^¡C

 

§U±Ð¥Ü½d±À¾É¡GCh2-8 ¦A½×µ¥¥[³t«×¹B°Ê

 

4-7 ¯¥À»®üµs²î

5-4¡]¾Ç¥Í¦Û¦æ¾\Ū¡^

5-5 ¥ú·Æ±×­±¥[³t«×

5-6 ¶³¾]­¸¨®

7-2 ±×¦V¬I¤O¨D§@¥\

7-5 ±×­±©Ô¤W¤§­«¤O§@¥\

7-8 ¼u¤O§@¥\

8-3 ¤ô·Æ±è¨D¥½³t

 

°Q½×

«B¤Ñ¹Lµó¨«©Î¶]¡H¡]°²³]¨­Å鬰¯x§Î¡A­n¦Ò¼{«B¬Oª½¥´©Î±×¥´¡^

¿jæǤW¤U¸j÷©ÔÂ_¨º®Ú¡H

§@·~

¤û¹y¥Í¥­¤Î¨ä¬ì¾Ç°ì´N¤p¶Ç¡]­­¤â¼g¡^

¸ÑÄÀ³o­Ó¼v¤ù http://www.youtube.com/watch?v=cxvsHNRXLjw&NR=1