¦V¶q»P±i¶q (II)

®y¼ÐÅÜ´«¡B¦V¶q·L¤À¡BªÅ¶¡¦±½u¡B­y¹D

 

®y¼ÐÅÜ´«

¦V¶qªº®y¼ÐÅÜ´«¡H¤@­Ó¦V¶q¦n¦nªº¦b¨ºùØ¡A¬°¦ó»Ý­n(«ç»ò¥i¥H)ÅÜ´«¡H

µe¦bªÅ¶¡¤¤ªº¦V¶qªº½T¤£¥²¡A¦ýÂǥѮy¼Ð¶b³æ¦ìªí¥Ü

¤À§O®³ e1^'¡Be2^'¡Be1^' »P¤W¤W¦¡ ¤§ A ¤º¿n¡A±o¤U¦C¤T¦¡

ªí¥Ü¦¨¯x°}«¬¡A«h²¤Æ¬°

¬Ý¡AÅÜ´«¡]Âà´«¡^¯x°}¥Ñ·s°ò©³°ß¤@¨M©w¡C

 

ª«²z¾Ç®a§Æ±æª«²z©w«ßªº¤½¦¡¡A¦b¤£¦P®y¼Ð¨t¤§¤U³£¬O§¹¥þ¬Û¦Pªº§Î¦¡¡C¦b¦¹¤@­n¨D¤U¡A¤Z¬O¥X²{¦b¤½¦¡¤¤¤§ª«²z¶q³£­n¨ã¦³¯S©wªº®y¼ÐÂà´«³W«h¡C¦Ó§Ú­Ì´N¬O³o¼Ë¥h©w¸q¯Â¶q¡B¦V¶q¡B±i¶q¡A¨Ã¥u¥Î³o¨Ç¶q¨Ó¥Nªí¤½¦¡¤¤ªºª«²z¶q¡C

 

½u©Ê¦V¶qªÅ¶¡ Vn

¥¿¥æÂk¤@¦V¶q f^i ¨ã f^i · f^j = δij ¯S©Ê

¨Ï¥ô·N A ¦³

A = Σi ci f^i¡A¨ä¤¤ ci = A · f^i

 

°ò©³ §¹³Æ(©Ê)

¤@²Õ¦V¶q, ¨¬¥H½u©Ê²Õ¦X ¥XªÅ¶¡¤¤¥ô·N¦V¶q®ÉºÙ¤§¬°§¹³Æ, ¸Ó²Õ¦V¶q§Î¦¨°ò©³, ¨ä¤¤¦U ¦V¶q ¥s °ò©³¦V¶q¡C

 

½u©Ê¿W¥ß

{f^1, f^2, f^3} ½u©Ê¿W¥ß : c1 f^1 + c2 f^2 + c3 f^3 = 0 ¡@iff ¡@ c1 = c2 = c3 = 0

¡]´X¦ó¸ÑÄÀ¡A¤T­Ó¦V¶q¦b¤Tºû¤¤¤£¦@­±¡C¡^

 

¦V¶qªÅ¶¡

¥[ªk (¥æ´««ß)

­¼«Y¼Æ (¤À°t«ß)

 (¤º¿n«D¥²­n) (¸Ô¨£ ºû°ò¦Ê¬ì or MathWorld)

 

¦V¶q·L¤À

¤À¶q·L¤À

(ª½±µ¨D¦V¶q®t¤]¥i)

A(t)

¦hÅܶq°¾·L¤À

A(u, v)

dA = (∂A /∂u ) du + (∂A /∂v ) dv

¤W­±³o­Ó dA ¥s°µ A ªº¥þ·L¤À¡A¦b¼ö¤O¾Ç»P«O¦u³õªº¤O¾Ç¤¤«D±`­«­n¡C

°Ý 1¡G¨ä·N¸qÅã¦Ó©ö¨£¡A§A¯à°÷¥Î¥Õ¸Ü§â¥¦Á¿¥X¨Ó¶Ü¡H

°Ý 2¡G³oùØ­±¤]¥]§t¤F·L¿n¤Àªº°ò¥»®Ö¤ßÆ[©À¡A§A¬Ý¥X¨Ó¤F¶Ü¡H¡C

 

²ßÃD

¥Î¤À¶q¤Î εijk ªí¥Üªk¡AÃÒ©ú d/dt (A × B) = dA/dt × B + A × dB/dt

 

ªÅ¶¡¦±½u

¦Ò¼{«e­±ªº¦V¶q­È A(u) ¬O ªÅ¶¡¤¤ªº¦ì¸m¦V¶q r(u) ¡A ©Î¥H¤U x(t)

°Ñ¼Æ

¤@­Ó¨}¦nªºªÅ¶¡¦±½uªº°Ñ¼Æªíªk¡Ax(t) ¬O 1 ¹ï 1¡B¦Ü¤Ö¤@¦¸¥i·L¡A¥H¤Î±×²v x'(t) ³B³B¤£¬°¹s¡C

¤Á¦V¶q

­Y¥H©·ªø s §@¬°°Ñ¼Æ¡]©·ªøªº©w¸q¥Î²¦¤ó©w²z¡A·Q¹³³\¦h¤pª½½u¬qªø«×¤§²Ö¿n¡A¨£·L¿n¤À©Î´X¦ó¾Ç½Ò¥»¡^¡A«h¤Á¦V¶q dx / ds = T^ «ê¬°³æ¦ìªø¡C

§â¦±½u¬Ý¦¨³\¦h¤p¬q¡A¦A§Q¥Î²¦¤ó©w²z ΔL = √(Δx12 + Δx22)

¦p¦¹¡AªÅ¶¡¦±½u©tªø°Ñ¼Æªº©w¸q¬°¡G

³o­Ó l   ¥i¥H³QÃÒ©ú±N»P¿ï¨ú°Ñ¼Æªí¥ÜªkµLÃö¡C¡]¦ý³o­Ó l ¯uªº¬O§Ú­Ì©Ò»{ª¾ªº©·ªø³oºØªF¦è¶Ü¡H«ç»ò¬Ý¥X¨Ó¡HÃöÁä¦b dx = (dx/dt) dt = x· dt¡A§Y dx = √(dx · dx) = √(x· · x· ) dt ¡^

©·ªø¥»¨­¥i¥H¨Ì¨äªø«×µo®iªºÅܤƦӮ³¨Ó·í§@¤@­Óªí¥Ü¦±½uªº°Ñ¼Æ¡A¥¦»P­ì°Ñ¼Æ¤§¶¡ªºÃö«Y¥u­n¥é·Ó¤W¦¡©w¸q¨Ó©w¦¨¥H¤Uªº§Î¦¡§Y¥i¡G

 

ªk¦V¶q, ¦±²v

³æ¦ì¤Á¦V¶qªº¤j¤p§ïÅܬO¦±²v¡A§ïÅܤè¦V¬Oªk¦V¶q¡CdT^/ds = κN^

 

¥­­±¹B°Ê¡]­«­n¡^

°ò©³¦V¶q¤£¬O©T©wªº

¬°¤°»ò¬O¤W¦¡³o¼Ë¡H¦]¬°µÜ¥¬¥§¯Y«ß

§Q¥Î e^r = cosθ e^1 + sinθ e^2

(d/dt) e^r = -sinθ (dθ/dt) e^1  + cosθ(dθ/dt) e^2 ¡A«h¨äªø«×¬°

√[( sin2θ+ cos2θ) (dθ/dt)2] = dθ/dt¡A¤è¦V«h«ê¬O e^θ¡]¦Û¤w¥Î¤O¬Ý²M·¡¡^¡A¦]¦¹±o¤U¦¡

¡]¥tªk¡G¥Ñ¹Ï¥i¬Ý¥X dl = dr e^r + r dθe^θ¡A¤@¼Ë¥i±o¤W¦¡¡C¡^

¡]¤£±Ä¥Î¥d¤ó®y¼Ð°ò©³¡A¬O¦Û§ä³Â·Ð¡H¡^

 

­y¹D°ÝÃD(¿ï)

»P¶ZÂ÷¥­¤è§e¤Ï¤ñ¤§§@¥Î¤O©Òºc¦¨ªº¤ÑÅé¡A¹B¦æ­y¹D¬°¤@¡]«Ê³¬ªº¡^¾ò¶ê¡C³o¬O¤û¹y¦b¨ä¥¨µÛ Principa Mathematica ¤¤´¦ÅSªºÃz¬µ©Êµ²ªG¡C¡]¸Ô¨£¤û¹y¶Ç°O¡^

§Q¥Î·¥®y¼Ð¡A¥i¥H«Ü®e©ö¦a±o¨ì¦¹µ²ªG¡C

 

±À¾É¦p¤U¡G

 

°ò¥»©w¸q¤Î©Ê½è

L = r × p = r × mv

¥iÃÒ©ú¨¤°Ê¶q¦u«í dL / dt = 0 ¡]°¨¤W·|¥Î¨ì¡^

 

L2 = L · L = L · ( r × v ) = r · ( v × L ) ¡]¯Â¶q¤T­«¿nªº½ü´«¡^

¨º v × L ¬O¦h¤Ö¡H¨£¤U

¥Ñ©ó d / dt ( v × L ) = d / dt (v) × L + v × d / dt (L) = d / dt (v) × L + 0 = dv / dt

¡]dL /dt = 0 ¬O¤¤¤ß¤O³õ¤U¨¤°Ê¶q¦u«í¤§¬G¡AÃÒ©ú¦p¤U¡G«Ý´Ó¤J¡^

¦Ó dv / dt = ?

¥Ñ¥­¤è¤Ï¤ñ§@¥Î¤O©w«ß¡A¦³ ma = m dv / dt = - ( k / r2 ) n^

¨ä¤¤ n^ ¬Oªk¦V¦V¶q¡]®|¦V¦V¶q¡^¡A¥Ñ­ìÂI¡]§@¥Î¤O¤¤¤ß¡^®g¥X¡C

 

¦p¦¹±o¨ì¡]´£¥Ü¡G§Q¥Î n^ = r / | r | ¡^

d / dt ( v × L ) = k dn^/dt

³o·N¨ýµÛ

v × L = k n^ + C

¥N¦^«e L2 ¦¡ ¤¤¡A±o

L2 = mr · ( v × L ) = m r ( k + C cosθ )

¾ã²z¬Ý r ¬O¦h¤Ö¡]§Y r »P θ ªºÃö«Y r(θ) ¡^

r = (L2/km) / [ 1 + C / (k cosθ) ]

¬Û·í©ó¶êÀ@¦±½uªº³q¦¡¡A

r = A / (1 + ε cosθ)

¨ä¤¤ ε ºÙ§@ Â÷¤ß²v¡]°¾¤ß²v ¡^ ¡A µø¨ä­Èªº¤£¦P¡A¥i¥H¬O¶ê¡B¾ò¶ê¡B©ßª«½u¡AÂù¦±½u¡C

¥Î¦b¤¤¤ß¤O°ÝÃD¡]¤×¨ä¬O¶ZÂ÷¥­¤è¤Ï¤ñ§@¥Î¤O¡^¨D¸Ñ¤W¡A¥i¸ÑÄÀ§J¤R°Ç¤§¦æ¬P©w«ßªº­y¹D¡C

r = A / (1 + ε cosθ)

Â÷¤ß²v 

ε = C / k = | v × L - k n^ | = ( 1 / k ) [ | v × L |2 + k2 - 2kn^ · ( v × L ) ]1/2

¥Ñ©ó v ««ª½©ó L¡A¬G | v × L |2 = v2L2

¤S«e¤w¦³ L2 = mr · ( v × L ) = m r n^ · ( v × L )

«h

ε = ( 1 / k ) [ v2L2 + k2 + 2k L2/(mr) ]1/2 = [ 1 + [2 L2 /(mk2)][mv2/2 - k/r] ]1/2

Á`µ²ε=

¨Ï¥Î·¥®y¼Ð¦V¶q¡A´N¯à¥H³Ì²¼äªº¤è¦¡±À±o¤W­zµ²ªG¡C